I need help with algebra questions
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Textbook Problems: 1.1 (pp. 12-15): #15, 21, 39, 47
Textbook Problems: 1.2 (pp. 19-21): #1, 3, 5;
Textbook Problems : 2.2 (pp. 52-54): #1, 3, 5, 7, 11, 29, 30
Textbook Problems: 1.1 (pp. 12-15): #17;
Textbook Problems: 1.2 (pp. 19-21): #7;
Textbook Problems : 2.2 (pp. 52-54): #13, 15, 117, 21, 223, 25;
Textbook Problems: 1.2 (pp. 19-21): #9;
Textbook Problems 2.2 (pp. 52-54): #27;
Textbook Problems 2.3 (pp. 61-63): #3, 5, 7, 9, 25, 27;
Textbook Problems 3.1 (pp. 91-96): #1, 3, 5.
Section 1.1 (pp. 11-15): #22, 37;
Section 1.2 (pp. 19-21): #9;
Section 2.2 (pp. 52-54): #55;
Section 2.3 (pp.61-63): #11, 13, 29, 31, 33;
Section 3.1 (pp. 91-96): #4, 6, 7, 13, 15, 26, 27, 29, 30
Section 2.3 (pp. 62-64): #8, 35, 147;
Section 2.5 (pp.75-76): #1, 3, 5, 7, 8;
Section 3.1 (pp. 91-96): #11, 17, 20, 31, 34. 35, 36, 37.
Section 2.3 (pp. 62-64): #124, 34;
Section 2.5 (pp.75-76): #6, 9, 15, 17, 19;
Section 3.1 (pp. 91-96): #21, 22, 38, 42.
Section 2.5 (pp.75-76): #16, 18;
Section 3.1 (pp. 91-96): #49C, 50A.
Section 4.1 (pp. 130-131): #1, 3, 15, 17, 19;
Section 4.2 (pp. 134-135): #5, 7, 9, 11;
Section 4.3 (pp. 140-142): #1, 3, 5, 7, 9, 11, 13, 29, 31;
Section 4.1 (pp. 130-131): #16;
Section 4.2 (pp. 134-135): 1 #13;
Section 4.3 (pp. 140-142): #30;
Section 4.4 (pp. 150-151): #8, 11, 12, 213, 15;
Section 5.1 (pp. 209-213): #51, 53.
Section 4.1 (pp. 130-131): 1#18;
Section 4.2 (pp. 134-135): #14;
Section 4.3 (pp. 140-142): #32;
Section 4.4 (pp. 150-151): #10;
Section 4.7 (pp. 171-172): #7, 9, 11, 25, 27, 231;
Section 5.1 (pp. 209-213): #12;
Section 4.1 (pp. 130-131): 1#5, find all intervals on which y1 = 2+x and y2 = x2 are
linearly independent;
Section 4.2 (pp. 134-135): #3;
Section 4.3 (pp. 140-142): #34, 49;
Section 4.4 (pp. 150-151): #9, solve y” – 4y = x2 – 3 + sin(2x), solve y”+16y = 2
sin(3x), solve y”+16y = 3 sin(4x);
Section 4.7 (pp. 171-172): #26, 28, 232;
Section 7.1 (pp. 285-286): Use the integral definition of the Laplace Transform to
find the Laplace transforms of: t2 and 3cos(2t)
•
•
•
Section 4.2 (pp. 134-135): #4;
Section 4.3 (pp. 140-142): #6;
Section 4.4 (pp. 150-151): Solve y” + 6y’ – 8y = sinh(2x)1, solve y” + y’ + y = x2 +
x + 1;
•
Section 4.7 (pp. 171-172): #13, solve 2×2 y” + 13xy’ -6y = 0, given y(1) = 3, y'(1)
= -5;
•
Section 4.1 (pp. 130-131): Use the Wronskian to show that sin(x) and sin(x+π)
are linearly dependent on the entire numberline. HINT: Use a trig identiy to
rewrite your evaluated Wronskian as a single trig function;
•
Section 7.1 (pp. 285-286): #1, use the integral definition of the Laplace
Transform to find the Laplace transforms of: sin(3x)2, then work problems #19,
23, 27, 31;
•
•
•
•
•
Section 7.2 (pp. 293-294): #1, 3, 7, 11, 13, 35, 37.
Section 7.1 (pp. 285-286): #3, 21, 29, 35;
Section 7.2 (pp. 293-294): #5, 9, 19, 139, 141, 142;
2
2,3
2y’ +3y = te4t, y(0) = 0;
y’ = 2 cosh(3x), y(0) = 19;
y’ – y = e-t, y(0) = 1;
2