Research a scholarly paper or professional video on “Business Systems Roles” and reflect on only one (1) of the following:
- What is the difference between a Systems Analysts, a Business Analyst, a Data Analyst and a super-users and what other ‘people’ roles deal with business systems?
NOTE:
You must copy and paste the topic “Business Systems Roles” at the start of your paper to provide a context for your answer.
This paper must be between 250-300 words on what caught your eye and reflect on what you read.
Do not add extraneous text that does not address the question – do not add an introduction or conclusion.
Do not copy and paste text from the referenced resource.You must provide at least one APA reference for your resource and corresponding in-text citations..
You must provide the referenced resource URL/DOI in the APA reference.
Do not use the Textbook as a referenced resource.
SYSTEMS ANALYSIS
and DESIGN
This page intentionally left blank
SYSTEMS ANALYSIS
and DESIGN
E I G H T H E D I T I O N
KENNETH E. KENDALL
Rutgers University
School of Business–Camden
Camden, New Jersey
JULIE E. KENDALL
Rutgers University
School of Business–Camden
Camden, New Jersey
Prentice Hall
Boston Columbus Indianapolis New York San Francisco
Upper Saddle River Amsterdam Cape Town Dubai London Madrid
Milan Munich Paris Montreal Toronto Delhi Mexico City
Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo
To the memory of Julia A. Kendall and the memory of Edward J. Kendall,
whose lifelong example of working together will inspire us forever.
Editorial Director: Sally Yagan
Editor in Chief: Eric Svendsen
Executive Editor: Bob Horan
Editorial Project Manager: Kelly Loftus
Editorial Assistant: Jason Calcano
Director of Marketing: Patrice Lumumba Jones
Senior Marketing Manager: Anne Fahlgren
Senior Managing Editor: Judy Leale
Associate Production Project Manager: Ana Jankowski
Senior Operations Supervisor: Arnold Vila
Senior Art Director: Steve Frim
Text and Cover Designer: Jill Lehan
Cover Art: Richard Kalina, “Carthage” collage,
acrylic, flashe on linen: © 2006
Media Project Manager: Lisa Rinaldi
Media Editor: Denise Vaughn
Full-Service Project Management/Composition: S4Carlisle
Publishing Services, Inc.
Printer/Binder: Courier/Kendallville
Cover Printer: Lehigh-Phoenix Color/Hagerstown
Text Font: 10/12 Times
Library of Congress Cataloging-in-Publication Data
Kendall, Kenneth E.
Systems analysis and design / Kenneth E. Kendall, Julie E. Kendall. — 8th ed.
p. cm.
Includes bibliographical references and index.
ISBN-13: 978-0-13-608916-2
ISBN-10: 0-13-608916-X
1. System design. 2. System analysis. 3. Systems programming (Computer science)
I. Kendall, Julie E., II. Title.
QA76.9.S88K45 2010
005.4’2—dc22 2009031275
“Carthage” © 2006 Richard Kalina, used with permission from the artist.
Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on
appropriate page within text.
Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. Screen
shots and icons reprinted with permission from the Microsoft Corporation. This book is not sponsored or endorsed by or
affiliated with the Microsoft Corporation.
Copyright © 2011, 2008, 2005 by Pearson Education, Inc., publishing as Prentice Hall, One Lake Street, Upper Saddle
River, New Jersey 07458. All rights reserved. Manufactured in the United States of America. This publication is protected
by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
To obtain permission(s) to use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458.
Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in
initial caps or all caps.
10 9 8 7 6 5 4 3 2 1
ISBN-10: 0-13-608916-X
ISBN-13: 978-0-13-608916-2
COMPANY
TRADEMARKS
Apple and Macintosh are registered trademarks of Apple Computer. 1Password is a registered
trademark of Agile Web Solutions. Bento is a registered trademark of FileMaker. Dragon
NaturallySpeaking is a registered trademark of Nuance. Dreamweaver, Adobe Flash, and
FormFlow are registered trademarks of Adobe Systems Incorporated. DEVONagent and
DEVONthink Professional Office are registered trademarks of DEVONtechnologies. Firefox is
a trademark of the Mozilla Foundation. Freeway Pro is a registered trademark of Softpress
Systems. HyperCase is a registered trademark of Raymond J. Barnes, Richard L. Baskerville,
Julie E. Kendall, and Kenneth E. Kendall. Microsoft Windows, Microsoft Access, Microsoft
Word, Microsoft PowerPoint, Microsoft Project, Microsoft Excel, and Microsoft Visio are regis-
tered trademarks of Microsoft Corporation. OmniFocus is a registered trademark of The Omni
Group. OmniGraffle and OmniPlan are registered trademarks of The Omni Group. OmniPage
is a trademark of Nuance. Palm is a registered trademark of Palm, Inc. ProModel and Service
Model are registered trademarks of ProModel Corporation. Things is a registered trademark of
Cultured Code. VMware Fusion is a registered trademark of VMware. Visible Analyst is a regis-
tered trademark of Visible Systems Corporation. WinFax Pro and Norton Internet Security are
registered trademarks of Symantec. Yojimbo is a registered trademark of Bare Bones Software.
Other product and company names mentioned herein may be the trademarks of their respective
owners. Companies, names, and/or data used in screens and sample output are fictitious unless
otherwise noted.
v
BRIEF
CONTENTS
PART I SYSTEMS ANALYSIS FUNDAMENTALS
1 SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES 1
2 UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 24
3 PROJECT MANAGEMENT 56
PART II INFORMATION REQUIREMENTS ANALYSIS
4 INFORMATION GATHERING: INTERACTIVE METHODS 103
5 INFORMATION GATHERING: UNOBTRUSIVE METHODS 131
6 AGILE MODELING AND PROTOTYPING 155
PART III THE ANALYSIS PROCESS
7 USING DATA FLOW DIAGRAMS 193
8 ANALYZING SYSTEMS USING DATA DICTIONARIES 228
9 PROCESS SPECIFICATIONS AND STRUCTURED DECISIONS 259
10 OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN USING UML 281
PART IV THE ESSENTIALS OF DESIGN
11 DESIGNING EFFECTIVE OUTPUT 329
12 DESIGNING EFFECTIVE INPUT 371
13 DESIGNING DATABASES 403
14 HUMAN-COMPUTER INTERACTION 441
PART V QUALITY ASSURANCE AND IMPLEMENTATION
15 DESIGNING ACCURATE DATA ENTRY PROCEDURES 485
16 QUALITY ASSURANCE AND IMPLEMENTATION 515
GLOSSARY 557
ACRONYMS 565
INDEX 566
vi
CONTENTS
PART I SYSTEMS ANALYSIS FUNDAMENTALS
1 SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES 1
Types of Systems 2
Transaction Processing Systems 2 / Office Automation Systems and Knowledge Work
Systems 2 / Management Information Systems 3 / Decision Support Systems 3 / Artificial
Intelligence and Expert Systems 3 / Group Decision Support Systems and Computer-
Supported Collaborative Work Systems 3 / Executive Support Systems 4
Integrating Technologies for Systems 4
Ecommerce Applications and Web Systems 4 / Enterprise Systems 5 / Systems for Wireless
and Mobile Devices 5 / Open Source Software 5
Need for Systems Analysis and Design 6
Roles of the Systems Analyst 6
Systems Analyst as Consultant 6 / Systems Analyst as Supporting Expert 6
Consulting Opportunity 1.1 Healthy Hiring: Ecommerce Help Wanted 7
Systems Analyst as Agent of Change 7 / Qualities of the Systems Analyst 8
The Systems Development Life Cycle 8
Incorporating Human-Computer Interaction Considerations 9 / Identifying Problems,
Opportunities, and Objectives 9 / Determining Human Information Requirements 10 /
Analyzing System Needs 10 / Designing the Recommended System 11 / Developing and
Documenting Software 11 / Testing and Maintaining the System 11 / Implementing and
Evaluating the System 11
MAC APPEAL 12
The Impact of Maintenance 12
Using Case Tools 14
The Agile Approach 14
Developmental Process for an Agile Project 15
Object-Oriented Systems Analysis and Design 17
Choosing Which Systems Development Method to Use 19
SUMMARY 19
HYPERCASE® EXPERIENCE 1 20
KEYWORDS AND PHRASES 21
REVIEW QUESTIONS 21
SELECTED BIBLIOGRAPHY 21
CPU CASE EPISODE 1: The Case Opens 23
vii
2 UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 24
Organizations as Systems 24
Interrelatedness and Interdependence of Systems 25
Consulting Opportunity 2.1 The E in Vitamin E Stands for Ecommerce 26
Virtual Organizations and Virtual Teams 26 / Taking a Systems Perspective 27 / Enterprise
Systems: Viewing the Organization as a System 28
Depicting Systems Graphically 29
Systems and the Context-Level Data Flow Diagram 29 / Systems and the Entity-
Relationship Model 30
MAC APPEAL 35
Use Case Modeling 35
Use Case Symbols 36 / Use Case Relationships 36 / Developing System Scope 38 /
Developing Use Case Diagrams 38 / Developing Use Case Scenarios 38 / Use Case
Levels 39 / Creating Use Case Descriptions 43 / Why Use Case Diagrams Are Helpful 43
Levels of Management 43
Consulting Opportunity 2.2 Where There’s Carbon, There’s a Copy 44
Implications for Information Systems Development 45
Organizational Culture 45
Consulting Opportunity 2.3 Pyramid Power 46
SUMMARY 46
HYPERCASE® EXPERIENCE 2 47
KEYWORDS AND PHRASES 48
REVIEW QUESTIONS 48
PROBLEMS 48
GROUP PROJECTS 49
SELECTED BIBLIOGRAPHY 50
CPU CASE EPISODE 2: Picturing the Relationships 51
3 PROJECT MANAGEMENT 56
Project Initiation 56
Problems in the Organization 57 / Defining the Problem 57
Consulting Opportunity 3.1 The Sweetest Sound I’ve Ever Sipped 58
Selection of Projects 61
Determining Feasibility 62
Determining Whether It Is Possible 62
Ascertaining Hardware and Software Needs 63
Inventorying Computer Hardware 64 / Estimating Workloads 64 / Evaluating Computer
Hardware 65 / Acquisition of Computer Equipment 66 / Software Evaluation 68
Consulting Opportunity 3.2 Veni, Vidi, Vendi, or, I Came, I Saw, I Sold 70
Identifying, Forecasting, and Comparing Costs and Benefits 72
Forecasting 72 / Identifying Benefits and Costs 72
Consulting Opportunity 3.3 We’re Off to See the Wizards 73
Comparing Costs and Benefits 74
Activity Planning and Control 77
Estimating Time Required 77
viii CONTENTS
Consulting Opportunity 3.4 Food for Thought 78
Using Gantt Charts for Project Scheduling 79 / Using PERT Diagrams 80
Managing the Project 82
Addressing System Complexity 82
MAC APPEAL 83
Managing Analysis and Design Activities 83
Assembling a Team 83
HYPERCASE® EXPERIENCE 3.1 84
Communication Strategies for Managing Teams 84
Consulting Opportunity 3.5 Goal Tending 85
Setting Project Productivity Goals 85 / Motivating Project Team Members 86 / Managing
Ecommerce Projects 86 / Creating the Project Charter 87 / Avoiding Project Failures 87
The Systems Proposal 88
Organizing the Systems Proposal 88 / Using Figures for Effective
Communication 89
SUMMARY 91
HYPERCASE® EXPERIENCE 3.2 92
KEYWORDS AND PHRASES 93
REVIEW QUESTIONS 93
PROBLEMS 94
GROUP PROJECTS 98
SELECTED BIBLIOGRAPHY 98
CPU CASE EPISODE 3: Getting to Know U 100
PART II INFORMATION REQUIREMENTS ANALYSIS
4 INFORMATION GATHERING: INTERACTIVE METHODS 103
Interviewing 103
Five Steps in Interview Preparation 104 / Question Types 105 / Arranging Questions in a
Logical Sequence 107
Consulting Opportunity 4.1 Strengthening Your Question Types 108
Writing the Interview Report 109
Consulting Opportunity 4.2 Skimming the Surface 110
Joint Application Design 111
Conditions That Support the Use of JAD 111 / Who Is Involved? 111
HYPERCASE® EXPERIENCE 4.1 112
Where to Hold JAD Meetings 112
Consulting Opportunity 4.3 A Systems Analyst, I Presume? 113
Accomplishing a Structured Analysis of Project Activities 113 / Potential Benefits of Using
JAD in Place of Traditional Interviewing 113 / Potential Drawbacks of Using JAD 113
Using Questionnaires 114
Planning for the Use of Questionnaires 114 / Writing Questions 115 / Using Scales in
Questionnaires 118 / Designing the Questionnaires 119
Consulting Opportunity 4.4 The Unbearable Questionnaire 120
Consulting Opportunity 4.5 Order in the Courts 121
Administering Questionnaires 122
SUMMARY 122
CONTENTS ix
HYPERCASE® EXPERIENCE 4.2 123
KEYWORDS AND PHRASES 123
REVIEW QUESTIONS 124
PROBLEMS 124
GROUP PROJECTS 127
SELECTED BIBLIOGRAPHY 127
CPU CASE EPISODE 4: I’ll Listen Now, Ask Questions Later 128
5 INFORMATION GATHERING: UNOBTRUSIVE METHODS 131
Sampling 131
The Need for Sampling 132 / Sampling Design 132 / The Sample Size Decision 134
Consulting Opportunity 5.1 Trapping a Sample 135
Investigation 136
Analyzing Quantitative Documents 136
Consulting Opportunity 5.2 A Rose by Any Other Name . . . Or Quality, Not
Quantities 137
Analyzing Qualitative Documents 140
HYPERCASE® EXPERIENCE 5.1 141
Observing a Decision Maker’s Behavior 142
Observing a Typical Manager’s Decision-Making Activities 142
Observing the Physical Environment 142
Structured Observation of the Environment (STROBE) 142
Consulting Opportunity 5.3 Don’t Bank on Their Self-Image or Not Everything
Is Reflected in a Mirror 145
Applying Strobe 146
MAC APPEAL 147
SUMMARY 148
HYPERCASE® EXPERIENCE 5.2 149
KEYWORDS AND PHRASES 150
REVIEW QUESTIONS 150
PROBLEMS 150
GROUP PROJECTS 152
SELECTED BIBLIOGRAPHY 153
CPU CASE EPISODE 5: Seeing Is Believing 154
6 AGILE MODELING AND PROTOTYPING 155
Prototyping 156
Kinds of Prototypes 156 / Prototyping as an Alternative to the SDLC 157
Developing a Prototype 158
Consulting Opportunity 6.1 Is Prototyping King? 159
Guidelines for Developing a Prototype 159
Consulting Opportunity 6.2 Clearing the Way for Customer Links 160
Disadvantages of Prototyping 160
Consulting Opportunity 6.3 To Hatch a Fish 161
Advantages of Prototyping 161 / Prototyping Using COTS Software 161
Consulting Opportunity 6.4 This Prototype Is All Wet 162
Users’ Role in Prototyping 162
x CONTENTS
Rapid Application Development 163
Phases of RAD 164 / Comparing RAD to the SDLC 165
Agile Modeling 166
Values and Principles of Agile Modeling 166 / Activities, Resources, and Practices of Agile
Modeling 168 / The Agile Development Process 171
MAC APPEAL 173
Lessons Learned from Agile Modeling 175
Comparing Agile Modeling and Structured Methods 176
Improving Efficiency in Knowledge Work: SDLC Versus Agile 177 / Risks Inherent in
Organizational Innovation 179
SUMMARY 181
HYPERCASE® EXPERIENCE 6 182
KEYWORDS AND PHRASES 183
REVIEW QUESTIONS 183
PROBLEMS 183
GROUP PROJECTS 185
SELECTED BIBLIOGRAPHY 185
CPU CASE EPISODE 6: Reaction Time 186
PART III THE ANALYSIS PROCESS
7 USING DATA FLOW DIAGRAMS 193
The Data Flow Approach to Human Requirements Determination 193
Advantages of the Data Flow Approach 193 / Conventions Used in Data Flow
Diagrams 194
Developing Data Flow Diagrams 195
Creating the Context Diagram 195 / Drawing Diagram 0 (The Next Level) 196 /
Creating Child Diagrams (More Detailed Levels) 198 / Checking the Diagrams
for Errors 198
Logical and Physical Data Flow Diagrams 200
Developing Logical Data Flow Diagrams 202 / Developing Physical Data Flow
Diagrams 203 / Partitioning Data Flow Diagrams 206
A Data Flow Diagram Example 207
Developing the List of Business Activities 207 / Creating a Context-Level Data Flow
Diagram 208 / Drawing Diagram 0 210 / Creating a Child Diagram 211 / Creating a
Physical Data Flow Diagram from the Logical DFD 212 / Partitioning the Physical
DFD 213
Partitioning Web Sites 213
Consulting Opportunity 7.1 There’s No Business Like Flow Business 216
Communicating Using Data Flow Diagrams 217
SUMMARY 217
HYPERCASE® EXPERIENCE 7 218
KEYWORDS AND PHRASES 218
REVIEW QUESTIONS 219
PROBLEMS 219
GROUP PROJECTS 221
SELECTED BIBLIOGRAPHY 221
CPU CASE EPISODE 7: Just Flowing Along 222
CONTENTS xi
8 ANALYZING SYSTEMS USING DATA DICTIONARIES 228
The Data Dictionary 228
Need for Understanding the Data Dictionary 229
The Data Repository 229
Defining the Data Flows 230 / Describing Data Structures 231 / Logical and Physical Data
Structures 233 / Data Elements 234 / Data Stores 236
Creating the Data Dictionary 238
Analyzing Input and Output 239
Consulting Opportunity 8.1 Want to Make It Big in the Theatre? Improve Your
Diction(ary)! 240
Developing Data Stores 241
Using the Data Dictionary 242
Using Data Dictionaries to Create XML 243 / XML Document Type Definitions 244 /
XML Schemas 246
HYPERCASE® EXPERIENCE 8 247
SUMMARY 248
KEYWORDS AND PHRASES 248
REVIEW QUESTIONS 248
PROBLEMS 249
GROUP PROJECTS 251
SELECTED BIBLIOGRAPHY 251
CPU CASE EPISODE 8: Defining What You Mean 252
9 PROCESS SPECIFICATIONS AND STRUCTURED DECISIONS 259
Overview of Process Specifications 259
Process Specification Format 260
Structured English 261
Writing Structured English 261
Consulting Opportunity 9.1 Kit Chen Kaboodle, Inc. 263
Consulting Opportunity 9.2 Kneading Structure 264
Data Dictionary and Process Specifications 265
Decision Tables 266
Developing Decision Tables 267
Consulting Opportunity 9.3 Saving a Cent on Citron Car Rental 269
Checking for Completeness and Accuracy 270
Decision Trees 271
Consulting Opportunity 9.4 A Tree for Free 272
Drawing Decision Trees 272
Choosing a Structured Decision Analysis Technique 273
SUMMARY 273
HYPERCASE® EXPERIENCE 9 274
KEYWORDS AND PHRASES 274
REVIEW QUESTIONS 274
PROBLEMS 274
GROUP PROJECTS 276
SELECTED BIBLIOGRAPHY 276
CPU CASE EPISODE 9: Tabling a Decision 277
xii CONTENTS
10 OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN USING UML 281
Object-Oriented Concepts 282
Objects 282 / Classes 282 / Inheritance 283
Consulting Opportunity 10.1 Around the World in 80 Objects 284
CRC Cards and Object Think 284
Interacting During a CRC Session 284
The Unified Modeling Language (UML) Concepts and Diagrams 286
Use Case Modeling 287
Activity Diagrams 290
Creating Activity Diagrams 292
Consulting Opportunity 10.2 Recycling the Programming Environment 293
Repository Entries for an Activity Diagram 294
Sequence and Communication Diagrams 294
Sequence Diagrams 294 / Communication Diagrams 296
Class Diagrams 297
Method Overloading 298 / Types of Classes 299 / Defining Messages and Methods 300
Enhancing Sequence Diagrams 300
A Class Example for the Web 300 / Presentation, Business, and Persistence Layers in
Sequence Diagrams 302
Enhancing Class Diagrams 303
Relationships 304 / Generalization/Specialization (Gen/Spec) Diagrams 306
Statechart Diagrams 309
A State Transition Example 310
Packages and Other UML Artifacts 311
Consulting Opportunity 10.3 Developing a Fine System That Was Long Overdue:
Using Object-Oriented Analysis for the Ruminski Public Library System 313
Putting UML to Work 313
Consulting Opportunity 10.4 C-Shore�� 315
The Importance of Using UML for Modeling 315
SUMMARY 316
HYPERCASE® EXPERIENCE 10 317
KEYWORDS AND PHRASES 317
REVIEW QUESTIONS 318
PROBLEMS 318
SELECTED BIBLIOGRAPHY 319
CPU CASE EPISODE 10: Classy Objects 320
PART IV THE ESSENTIALS OF DESIGN
11 DESIGNING EFFECTIVE OUTPUT 329
Output Design Objectives 329
Designing Output to Serve the Intended Purpose 329 / Designing Output to Fit the
User 330 / Delivering the Appropriate Quantity of Output 330 / Making Sure the Output Is
Where It Is Needed 330 / Providing the Output on Time 330 / Choosing the Right Output
Method 330
CONTENTS xiii
Relating Output Content to Output Method 330
Output Technologies 331
Consulting Opportunity 11.1 Your Cage or Mine? 335
Factors to Consider When Choosing Output Technology 336
Consulting Opportunity 11.2 A Right Way, a Wrong Way, and a Subway 339
Realizing How Output Bias Affects Users 340
Recognizing Bias in the Way Output Is Used 340 / Avoiding Bias in the
Design of Output 341 / Designing Printed Output 341 / Guidelines for
Printed Report Design 341
Consulting Opportunity 11.3 Should This Chart Be Barred? 342
Designing Output for Displays 344
Guidelines for Display Design 344 / Using Graphical Output in Screen Design 345 /
Dashboards 346 / Widgets and Gadgets—Changing the Desktop Metaphor 347
Consulting Opportunity 11.4 Is Your Work a Grind? 348
Designing a Web Site 348
General Guidelines for Designing Web Sites 348
MAC APPEAL 351
Consulting Opportunity 11.5 A Field Day 356
Maintaining Web Sites 356 / Creating Blogs (Web Logs) 357
Output Production and XML 357
Ajax 358
HYPERCASE® EXPERIENCE 11 360
SUMMARY 360
KEYWORDS AND PHRASES 361
REVIEW QUESTIONS 361
PROBLEMS 362
GROUP PROJECTS 365
SELECTED BIBLIOGRAPHY 365
CPU CASE EPISODE 11: Reporting on Outputs 366
12 DESIGNING EFFECTIVE INPUT 371
Good Form Design 371
Making Forms Easy to Fill In 372 / Meeting the Intended Purpose 374 / Ensuring Accurate
Completion 375 / Keeping Forms Attractive 375 / Controlling Business Forms 376
Good Display and Web Forms Design 376
Keeping the Display Simple 376
Consulting Opportunity 12.1 This Form May Be Hazardous to Your Health 377
Keeping the Display Consistent 378 / Facilitating Movement 378 / Designing an Attractive
and Pleasing Display 378 / Using Icons in Display Design 378
Consulting Opportunity 12.2 Squeezin’ Isn’t Pleasin’ 379
Graphical User Interface Design 379 / Form Controls and Values 381 / Hidden Fields 382 /
Event-Response Charts 382 / Dynamic Web Pages 383 / Three-Dimensional Web Pages
385 / Ajax (Asynchronous JavaScript and XML) 387 / Using Color in Display Design 389
Intranet and Internet Page Design 389
Consulting Opportunity 12.3 It’s Only Skin Deep 390
MAC APPEAL 392
xiv CONTENTS
SUMMARY 392
HYPERCASE® EXPERIENCE 12 393
KEYWORDS AND PHRASES 394
REVIEW QUESTIONS 394
PROBLEMS 395
GROUP PROJECTS 397
SELECTED BIBLIOGRAPHY 398
CPU CASE EPISODE 12: Forming Screens and Screening Forms 399
13 DESIGNING DATABASES 403
Databases 403
Consulting Opportunity 13.1 Hitch Your Cleaning Cart to a Star 404
Data Concepts 404
Reality, Data, and Metadata 404 / Files 410 / Relational Databases 411
Normalization 413
The Three Steps of Normalization 413 / A Normalization Example 414 / Using the Entity-
Relationship Diagram to Determine Record Keys 421 / One-to-Many Relationship 422 /
Many-to-Many Relationship 423
Guidelines for Master File/Database Relation Design 424
Integrity Constraints 424
MAC APPEAL 425
Anomalies 425
Making Use of the Database 426
Steps in Retrieving and Presenting Data 426
Denormalization 426
Data Warehouses 429
Online Analytic Processing 429 / Data Mining 429
Consulting Opportunity 13.2 Storing Minerals for Health, Data for Mining 430
Consulting Opportunity 13.3 Losing Prospects 431
SUMMARY 432
HYPERCASE® EXPERIENCE 13 433
KEYWORDS AND PHRASES 433
REVIEW QUESTIONS 434
PROBLEMS 434
GROUP PROJECT 436
SELECTED BIBLIOGRAPHY 436
CPU CASE EPISODE 13: Back to Data Basics 437
14 HUMAN-COMPUTER INTERACTION 441
Understanding Human-Computer Interaction 441
How Fit Affects Performance and Well-Being 442 / The Technology Acceptance Model
and Attitude 443
Usability 444
Designing for the Cognitive Styles of Individual Users 444 / Physical Considerations in
HCI Design 448 / Considering Human Limitations, Disabilities, and Design 449
Consulting Opportunity 14.1 School Spirit Comes in Many Sizes 450
Implementing Good HCI Practices 450
CONTENTS xv
Types of User Interface 451
Natural-Language Interfaces 451 / Question-and-Answer Interfaces 452 / Menus 453
Consulting Opportunity 14.2 I’d Rather Do It Myself 454
Form-Fill Interfaces (Input/Output Forms) 454 / Command-Language Interfaces 455
Consulting Opportunity 14.3 Don’t Slow Me Down 456
Graphical User Interfaces 456
Consulting Opportunity 14.4 That’s Not a Lightbulb 457
Other User Interfaces 457
Guidelines for Dialog Design 458
Meaningful Communication 459 / Minimal User Action 459
Consulting Opportunity 14.5 Waiting to Be Fed 461
Standard Operation and Consistency 461
Feedback for Users 461
Types of Feedback 462 / Including Feedback in Design 464
Special Design Considerations for Ecommerce 465
Soliciting Feedback from Ecommerce Web Site Customers 465 / Easy Navigation for
Ecommerce Web Sites 465
Consulting Opportunity 14.6 When You Run a Marathon,It Helps to Know Where
You’re Going 466
MAC APPEAL 467
Mashups 468
Designing Queries 468
Query Types 469 / Query Methods 471
Consulting Opportunity 14.7 Hey, Look Me Over (Reprise) 472
SUMMARY 474
KEYWORDS AND PHRASES 474
HYPERCASE® EXPERIENCE 14 475
REVIEW QUESTIONS 476
PROBLEMS 476
GROUP PROJECTS 477
SELECTED BIBLIOGRAPHY 478
CPU CASE EPISODE 14: Up to the Users 479
PART V QUALITY ASSURANCE AND IMPLEMENTATION
15 DESIGNING ACCURATE DATA ENTRY PROCEDURES 485
Effective Coding 485
Keeping Track of Something 486 / Classifying Information 487 / Concealing Information
488 / Revealing Information 488 / Unicode 490 / Requesting Appropriate Action 491 /
General Guidelines for Coding 491
Consulting Opportunity 15.1 It’s a Wilderness in Here 492
Consulting Opportunity 15.2 Catching a Summer Code 494
Effective and Efficient Data Capture 494
Deciding What to Capture 494 / Letting the Computer Do the Rest 495 / Avoiding
Bottlenecks and Extra Steps 496 / Starting with a Good Form 496 / Choosing a Data Entry
Method 496
xvi CONTENTS
Consulting Opportunity 15.3 To Enter or Not to Enter: That Is the Question 499
Ensuring Data Quality Through Input Validation 499
Validating Input Transactions 500 / Validating Input Data 500
Consulting Opportunity 15.4 Do You Validate Parking? 504
The Process of Validation 505
Accuracy Advantages in Ecommerce Environments 506
Customers Keying Their Own Data 506 / Storing Data for Later Use 506 / Using Data
Through the Order Fulfillment Process 506 / Providing Feedback to Customers 506
HYPERCASE® EXPERIENCE 15 507
SUMMARY 507
KEYWORDS AND PHRASES 508
REVIEW QUESTIONS 508
PROBLEMS 509
GROUP PROJECTS 511
SELECTED BIBLIOGRAPHY 511
CPU CASE EPISODE 15: Entering Naturally 512
16 QUALITY ASSURANCE AND IMPLEMENTATION 515
The Total Quality Management Approach 516
Six Sigma 516 / Responsibility for Total Quality Management 516 / Structured
Walkthrough 517
Consulting Opportunity 16.1 The Quality of MIS Is Not Strained 518
Top-Down Systems Design and Development 518
MAC APPEAL 520
Using Structure Charts to Design Modular Systems 520 / Service-Oriented Architecture
(SOA) 522
Documentation Approaches 523
Procedure Manuals 523 / The FOLKLORE Method 523
Consulting Opportunity 16.2 Write Is Right 524
HYPERCASE® EXPERIENCE 16.1 525
Choosing a Design and Documentation Technique 526
Testing, Maintenance, and Auditing 526
The Testing Process 526
Consulting Opportunity 16.3 Cramming for Your Systems Test 528
Maintenance Practices 528 / Auditing 529
Implementing Distributed Systems 529
Client-Server Technology 529 / Cloud Computing 531 / Network Modeling 533
Training Users 536
Training Strategies 537 / Guidelines for Training 537
Consulting Opportunity 16.4 You Can Lead a Fish to Water . . . But You Can’t Make
It Drink 538
Conversion to a New System 539
Conversion Strategies 539 / Other Conversion Considerations 540 / Organizational
Metaphors and Their Relationship to Successful Systems 541
Security Concerns for Traditional and Web-Based Systems 542
Physical Security 542 / Logical Security 542 / Behavioral Security 543 / Special Security
Considerations for Ecommerce 543 / Privacy Considerations for Ecommerce 544 / Disaster
Recovery Planning 544
CONTENTS xvii
Consulting Opportunity 16.5 The Sweet Smell of Success 546
Evaluation 546
Evaluation Techniques 546 / The Information System Utility Approach 546
Consulting Opportunity 16.6 Mopping Up with the New System 548
Evaluating Corporate Web Sites 548
SUMMARY 550
HYPERCASE® EXPERIENCE 16.2 551
KEYWORDS AND PHRASES 551
REVIEW QUESTIONS 551
PROBLEMS 552
GROUP PROJECTS 554
SELECTED BIBLIOGRAPHY 554
CPU CASE EPISODE 16: Semper Redundate 555
GLOSSARY 557
ACRONYMS 565
INDEX 566
xviii CONTENTS
PREFACE
NEW TO THIS EDITION
The eighth edition of Kendall & Kendall: Systems Analysis and Design includes substantial
changes mandated by the rapid changes in the IS field in the last three years, and they are included
as a response to the input of our adopters, students, and reviewers. Many new and updated fea-
tures are integrated throughout. In particular:
� Early introduction of three methodologies: SDLC, agile approaches, and object-oriented
systems analysis and design with UML, along with reasons and situations for when to
use them (Chapter 1)
� Expanded coverage of COTS due to their increasing use in organizations (Chapter 3)
� Object-oriented analysis and design expanded and featured in the center of the text so it
can be more easily incorporated into term projects (Chapter 10)
� New object-oriented analysis and design problems included in the O-O CPU Episode
(Chapter 10)
� New feature throughout the text called Mac Appeal, which discusses innovative soft-
ware available on Macs
� New coverage of cloud computing (Chapter 16)
� New section on SOA (service-oriented architecture) (Chapter 16)
� New end-of-chapter Review Questions, Problems, and Group Exercises
� Reorganized, updated, and strengthened chapter on agile methods (Chapter 6)
� Strengthened project management by introducing the project charter early in the process
(Chapter 3)
� Early introduction of how to prepare the systems proposal (Chapter 3)
� Updated and streamlined CPU Case Episodes, the case that runs throughout the text.
Students can use Microsoft Access, Microsoft Visio, or Visible Analyst to complete new
assignments throughout the text
� Updated scenarios, problems, and graphics throughout the text to accompany
HyperCase 2.8, a graphical simulation for the Web that allows students to apply their
new skills
DESIGN FEATURES
Figures take on a stylized look in order to help students
more easily grasp the subject matter.
Conceptual diagrams are used to introduce the many
tools that systems analysts have at their disposal. This ex-
ample shows the differences between logical data flow di-
agrams and physical data flow diagrams. Conceptual
diagrams are color coded so that students can distinguish
easily among them, and their functions are clearly indicated.
Many other important tools are illustrated, including use
case diagrams, sequence diagrams, and class diagrams.
xix
Items and Prices
Customer
Identify
Item
1
D1 Prices
Items to
Purchase
Prices
Look Up
Prices
2
Item ID Amount to Be PaidCompute
Total
Cost of
Order
3
Receipt
Settle
Transaction
and Issue
Receipt
4
Customer
Payment
Logical Data Flow Diagram
Item Codes and Prices
Customer
Pass
Items Over
Scanner
(Manual)
1
D1 UPC Price File Temporary
Trans. File
Items Brought
to Checkout
Item Description
and Prices
Look Up
Code and
Price
in File
2
UPC Bar Code
Calculated
Amount to Be PaidCompute
Total
Cost
3
Cash Register
Receipt
Collect Money
and Give
Receipt
(Manual)
4
Customer
Cash, Check,
or Debit Card
Physical Data Flow Diagram
UPC Code
D2
Items, Prices,
and Subtotals
Items and
Prices
Computer displays demonstrate important software
features that are useful to the analyst. This example
shows how a Web site can be evaluated for broken links
by using a package such as Microsoft Visio. Actual screen
shots show important aspects of design. Analysts are con-
tinuously seeking to improve the appearance of the
screens and Web pages they design. Colorful examples
help to illustrate why some screen designs are particu-
larly effective.
Paper forms are used throughout to show input and
output design as well as the design of questionnaires.
Blue ink is always used to show writing or data input,
thereby making it easier to identify what was filled in by
users. Although most organizations have computeriza-
tion of manual processes as their eventual goal, much
data capture is still done using paper forms. Improved
form design enables analysts to ensure accurate and com-
plete input and output. Better forms can also help stream-
line new internal workflows that result from newly auto-
mated business-to-consumer (B2C) applications for
ecommerce on the Web.
Tables are used when an important list needs special
attention, or when information needs to be organized or
classified. In addition, tables are used to supplement the
understanding of the reader in a way that departs from
how material is organized in the narrative portion of the text. Most analysts find tables a useful
way to organize numbers and text into a meaningful “snapshot.”
This example of a table from Chapter 3 shows how analysts can refine their activity plans for
analysis by breaking them down into smaller tasks and then estimating how much time it will take
to complete them. The underlying philosophy of our book
is that systems analysis and design is a process that inte-
grates the use of many tools with the unique talents of the
systems analyst to systematically improve business
through the implementation or modification of computer-
ized information systems. Systems analysts can grow in
their work by taking on new IT challenges and keeping
current in their profession through the application of new
techniques and tools.
A BRIEF TOUR OF THE EIGHTH EDITION
xx PREFACE
8
then estimate
time required.
Conduct interviews
Administer questionnaires
Read company reports
Introduce prototype
Observe reactions to prototype
Analyze data flow
Perform cost-benefit analysis
Prepare proposal
Present proposal
Data gathering
Data flow and decision analysis
Proposal preparation
3
4
4
5
3
3
2
2
Weeks
RequiredDetailed ActivityActivity
Break thesedown further,
PAYMENT RECORD: Tot. 31175/0 + 81299 + Rent =
TOTAL INITIAL PAYMENT REQUIRED:
855 55
910
H/S dep.
4
Date Date Receipt Paid to Total Secur- Clean- 31700 81299 Other Amount Balance
Due Paid Number Noon Rent ity ing Tax Dates Amt. Descr. Amt. Paid Due
TV 10/3 MO! 8/28 8/28 106642 9/30 1031.32 202 115 44.20 25 414.82 15 1430.52 0
10/1 10/3 107503 10/31 910
910 0
11/1 11/1 10935 11/16 485.28
485.28 0
C1H/S9-16 11/17 11/8 11200 11/23 212.31
212.31 0
Bill 1 MO 11/24Prorated
H/S should becreated towardrefund deposit
BLDG. #
NAME
Orig. Move-in Date
d
Exp.
x #
Base Refrig- Furni-
Total Secur- Clean-
31700
Daily
Rent erator ture
Rent ity ing
Tax
Rate
8-28
same
1Kendall
1st
PROJ. NAME
#
KEY SIGNATURE
RENT POTENTIAL
1175/0 81299
PRORATE
A/C Util. HMSR T.V. Maid
31175/0 81299 Days
Totals
DEPOSITPOTENTIAL
Deposits
Memo Only
31175/0
OAK. FC 562
H/S
rent 30.33
1.30 910
39
200 115
31.63 340
910
1430.52
15.00
121.32
5.20
Watch for places
the computer can
simplify the work.
Observe the
number and type
of transactions.
Check for errors.
Look foropportunitiesfor improvementin design.
Part I:
Systems Analysis
Fundamentals
Part II:
Information
Requirements
Analysis
Part V:
Quality
Assurance and
Implementation
Part III:
The Analysis
Process
Part IV:
The Essentials
of Design
Systems analysis and design is typically taught in one or two semesters. Our book may be used
in either situation. The text is appropriate for undergraduate (junior or senior) curricula at a four-
year university, graduate school, or community college. The level and length of the course can be
varied and supplemented by using real-world projects, HyperCase, or other materials available
on the Instructor Resource Center.
The text is divided into five major parts: Systems Analysis Fundamentals (Part I),
Information Requirements Analysis (Part II), The Analysis Process (Part III), The Essentials of
Design (Part IV), and Quality Assurance and Implementation (Part V).
Part I (Chapters 1–3) stresses the basics that students need to know about what an analyst
does and introduces the three main methodologies of the systems development life cycle
(SDLC), agile approaches, and object-oriented analysis
with UML, along with reasons and situations for when to
use them. Part I shows how a variety of emerging infor-
mation systems, including mobile and wireless technolo-
gies, and enterprise systems integrate IT and fit into or-
ganizations; how to determine whether a systems project
is worthy of commitment; ecommerce project manage-
ment; and how to manage a systems project using special
software tools. The three roles of the systems analyst as
consultant, supporting expert, and agent of change are in-
troduced, and ethical issues and professional guidelines
for serving as a systems consultant are covered. There is
also material on virtual teams and virtual organizations,
and the concept of HCI is introduced. The use of open source software (OSS) is also introduced.
Chapter 2 includes how to initially approach an organization by drawing context-level data flow
diagrams, using entity-relationship models, and developing use cases and use case scenarios.
Chapter 3 introduces expanded material on creating the project charter and introduces writing
the systems proposal early in the process, no matter what method of analysis and design has been
chosen. Expanded coverage of evaluating software and hardware, and when to use COTS (com-
mercial off-the-shelf software), is included. This chapter teaches several methods for forecast-
ing costs and benefits, which are necessary to the discussion of acquiring software and hardware.
Chapter 3 helps students evaluate software by assessing trade-offs among creating custom soft-
ware, purchasing commercial-off-the-shelf (COTS) software, or outsourcing to an application
service provider (ASP). Creating a problem definition and determining feasibility are also cov-
ered. Chapter 3 guides students in professionally writing and presenting an effective systems
proposal, one that incorporates figures and graphs to communicate with users.
Part II (Chapters 4–6) emphasizes the use of systematic and structured methodologies for
performing information requirements analysis. Attention to analysis helps analysts ensure that
they are addressing the correct problem before designing
the system. Chapter 4 introduces a group of interactive
methods, including interviewing, joint application design
(JAD), and constructing questionnaires. Chapter 5 intro-
duces a group of unobtrusive methods for ascertaining in-
formation requirements of users. These methods include
sampling, investigating hard and archival data, and ob-
servation of decision makers’ behavior and their physical
environment. Chapter 6 on agile modeling and prototyp-
ing is innovative in its treatment of prototyping as another
data-gathering technique that enables the analyst to solve
the right problem by getting users involved from the start.
Agile approaches have their roots in prototyping, so this
chapter begins with prototyping to provide a proper context for understanding, and then takes up
the agile approach. The values and principles, activities, resources, practices, processes, and tools
associated with agile methodologies are presented. This chapter also includes material on rapid
application development (RAD) for human information-requirements gathering and interface
design.
PREFACE xxi
Modify Diagrams and
Complete
Specifications
Develop and
Document the
System
Draw Use Case
Diagrams
Write Use Case
Scenarios
Derive Activity
Diagrams from Use
Cases
Develop Sequence
Diagrams
Draw Statechart
Diagrams
Create Class
Diagrams
Systems Analysis
Phase
Systems Design
Phase
Problem Identification
Phase
Begin Object-Oriented
Analysis and Design
Observer Name
DateSystem or Project Name
Company or Location
Program Name or Number
VersionUser 1 User 2 User 3 User 4
User Name
Period Observed
User Reactions
User Suggestions
Innovations
Revision Plans
Michael Cerveris
1/06/2010Cloud Computing Data Center Aquarius Water FiltersPrev. Maint.
1
Andy H. Pam H.1/06/2010 1/06/2010Generally
favorable,
got excited
about project
Excellent!
Add the date
when maintenance
was performed.
Place a form
number on top
for reference.
Place word
WEEKLY in title.
Modify on
1/08/2010
Review with
Andy and Pam.
Prototype Evaluation Form
Part III (Chapters 7–10) details the analysis
process. It builds on the previous two parts to move stu-
dents into analysis of data flows as well as structured and
semistructured decisions. It provides step-by-step details
on how to use structured techniques to draw data flow di-
agrams (DFDs). Chapter 7 provides coverage of how to
create child diagrams; how to develop both logical and
physical data flow diagrams; and how to partition data
flow diagrams. Chapter 8 features material on the data
repository and vertical balancing of data flow diagrams.
Chapter 8 also includes extensive coverage of extensible
markup language (XML) and demonstrates how to use
data dictionaries to create XML. Chapter 9 includes ma-
terial on developing process specifications. A discussion
of both logical and physical process specifications shows
how to use process specifications for horizontal balanc-
ing. Chapter 9 also covers how to diagram structured de-
cisions with the use of structured English, decision ta-
bles, and decision trees. In addition, the chapter covers how to choose an appropriate decision
analysis method for analyzing structured decisions and creating process specifications. Push tech-
nologies are also introduced.
Part III concludes with Chapter 10 on object-oriented systems analysis and design. This chap-
ter includes an in-depth section on using unified modeling language (UML). There is detailed cov-
erage of the use case model, creating the class model diagram with UML, sequence diagrams, cre-
ating gen/spec diagrams, use case scenarios, and activity diagrams. Through several examples and
Consulting Opportunities, this chapter demonstrates how to use an object-oriented approach.
Consulting Opportunities, diagrams, and problems enable students to learn and use UML to model
systems from an object-oriented perspective. Students learn the appropriate situations for using an
object-oriented approach. This chapter helps students to decide whether to use the SDLC, the agile
approach, or object-oriented systems analysis and design to develop a system.
Part IV (Chapters 11–14) covers the essentials of
design. It begins with designing output, because many
practitioners believe systems to be output driven. The de-
sign of Web-based forms is covered in detail. Particular
attention is paid to relating output method to content, the
effect of output on users, and designing good forms and
screens. Chapter 11 compares advantages and disadvan-
tages of output, including Web displays, audio, DVD, and
electronic output such as email and RSS feeds. Designing
a Web site for ecommerce purposes is emphasized, and output production and XML is covered.
Chapter 12 includes innovative material on designing Web-based input forms, as well as other
electronic forms design. Also included is computer-assisted forms design.
Chapter 12 features in-depth coverage of Web site design, including guidelines on when de-
signers should add video, audio, and animation to Web site designs. The chapter also covers uses
of Web push and pull technologies for output designs. There is detailed consideration of how to
create effective graphics for corporate Web sites and ways to design effective onscreen naviga-
tion for Web site users.
Coverage of intranet and extranet page design is also included. Consideration of database in-
tegrity constraints has been included as well, in addition to how the user interacts with the com-
puter and how to design an appropriate interface. The importance of user feedback is also found
in Part IV. How to design accurate data entry procedures that take full advantage of computer and
human capabilities to assure entry of quality data is emphasized here.
Chapter 13 demonstrates how to use the entity-relationship diagram to determine record
keys, as well as providing guidelines for file/database relation design. Students are shown the rel-
evance of database design for the overall usefulness of the system, and how users actually use
databases.
xxii PREFACE
method(Parameter)
return
asynchronousSignal( )
::Class Object::Class
Web site logo Feature storyjpeg image
Video
subscription
Quick links Main
stories
Chat roomsAdvertisements Email contact link
RSS feeds
Banner ads
Links to
sub-Webs
Search engine
Chapter 14 emphasizes Human–Computer Interaction (HCI), especially as it relates to inter-
face design. It introduces HCI, discussing its importance in designing systems that suit individu-
als and assisting them in achieving personal and organizational goals through their use of infor-
mation technology. The concepts of usability, fit, perceived usefulness, and perceived ease of use
are introduced, as is the Technology Acceptance Model (TAM), so that systems students can
knowledgeably incorporate HCI practices into their designs. Chapter 14 also features material on
designing easy onscreen navigation for Web site visitors. The chapter presents innovative ap-
proaches to searching on the Web, highlights material on GUI design, and provides innovative
approaches to designing dialogs. Chapter 14 articulates specialized design considerations for
ecommerce Web sites. Mashups, new applications created by combining two or more Web-based
application programming interfaces, are also introduced. Chapter 14 also includes extensive
coverage on how to formulate queries, all within the framework of HCI.
Part V (Chapters 15 and 16) concludes the book.
Chapter 15 focuses on designing accurate data entry pro-
cedures and includes material on managing the supply
chain through the effective design of business-to-busi-
ness (B2B) ecommerce. Chapter 16 emphasizes taking a
total quality approach to improving software design and
maintenance. In addition, material on system security
and firewalls is included. Testing, auditing, and mainte-
nance of systems are discussed in the context of total
quality management. This chapter helps students under-
stand how service-oriented architecture (SOA) and cloud
computing are changing the nature of information sys-
tems design. In addition, students learn how to design ap-
propriate training programs for users of the new system,
how to recognize the differences among physical conver-
sion strategies, and how to be able to recommend an ap-
propriate one to a client. Chapter 16 also presents techniques for modeling networks, which can
be done with popular tools such as Microsoft Visio.
Material on security and privacy in relation to designing ecommerce applications is included.
Coverage of security, specifically firewalls, gateways, public key infrastructure (PKI), secure
electronic translation (SET), secure socket layering (SSL), virus protection software, URL filter-
ing products, email filtering products, and virtual private networks (VPN), is included.
Additionally, current topics of interest to designers of ecommerce applications, including the
development and posting of corporate privacy policies, are covered.
Important coverage of how the analyst can promote and then monitor a corporate Web site is
included in this section, which features Web activity monitoring, Web site promotion, Web traf-
fic analysis, and audience profiling to ensure the effectiveness of new ecommerce systems.
Techniques for evaluating the completed information systems project are covered systematically
as well.
The eighth edition contains an updated Glossary of terms and a separate list of updated
Acronyms used in the book and in the systems analysis and design field.
PEDAGOGICAL FEATURES
Chapters in the eighth edition contain:
� Learning Objectives at the beginning of each chapter
� Summaries that tie together the salient points of each chapter while providing an excel-
lent source of review for exams
� Keywords and Phrases
� Review Questions
� Problems
� Group Projects that help students work together in a systems team to solve important
problems that are best solved through group interaction
� Consulting Opportunities—now more than 60 minicases throughout the book
PREFACE xxiii
Web Services Application ServicesDatabase Services
Client Computers
� Mac Appeal columns that update students on design software available on the Mac and
iPhone
� HyperCase Experiences
� CPU Case Episodes—parts of an ongoing case threaded throughout the book
CONSULTING OPPORTUNITIES
The eighth edition presents more than 60 Consulting
Opportunities, and many of them address relevant and
emerging topics that have arisen in the field, including de-
signing systems from an HCI perspective, ecommerce ap-
plications for the Web, COTS software, and using UML
to model information systems from an object-oriented
perspective. Consulting Opportunities can be used for
stimulating in-class discussions, or assigned as home-
work or take-home exam questions.
Because not all systems are extended two- or three-
year projects, our book contains many Consulting Opportunities that can be solved quickly in 20
to 30 minutes of group discussion or individual writing. These minicases, written in a humorous
manner to enliven the material, require students to synthesize what they have learned up to that
point in the course, ask students to mature in their professional and ethical judgment, and expect
students to articulate the reasoning that led to their systems decisions.
HYPERCASE EXPERIENCES
HyperCase® Experiences that pose challenging student ex-
ercises are present in each chapter. New scenarios, graph-
ics, and problems to accompany HyperCase version 2.8
are included in the eighth edition. HyperCase has organi-
zational problems featuring state-of-the-art technological
systems. HyperCase represents an original virtual organi-
zation that allows students who access it to become imme-
diately immersed in organizational life. Students will in-
terview people, observe office environments, analyze their
prototypes, and review the documentation of their existing
systems. HyperCase 2.8 is Web-based, interactive soft-
ware that presents an organization called Maple Ridge
Engineering (MRE) in a colorful, three-dimensional
graphics environment. HyperCase permits professors to
begin approaching the systems analysis and design class with exciting multimedia material.
Carefully watching their use of time and managing multiple methods, students use the hypertext
characteristics of HyperCase on the Web to create their own individual paths through the
organization.
Maple Ridge Engineering is drawn from the actual consulting experiences of the authors of
the original version (Raymond Barnes, Richard Baskerville, Julie E. Kendall, and Kenneth E.
Kendall). Allen Schmidt joined the project for version 2.0 and has remained with it. Peter Schmidt
was the HTML programmer, and Jason Reed created the images for the initial Web version.
In each chapter, there are newly updated HyperCase Experiences that include assignments
(and even some clues) to help students solve the difficult organizational problems including de-
veloping new systems, merging departments, hiring of employees, security, ecommerce, and dis-
aster recovery planning they encounter at MRE. HyperCase has been fully tested in classrooms,
and was an award winner in the Decision Sciences Institute Innovative Instruction competition.
CPU CASE EPISODES
In keeping with our belief that a variety of approaches are important, we have once again inte-
grated the Central Pacific University (CPU) case into every chapter of the eighth edition. The
xxiv PREFACE
Patient Last Name First Middle Initial
Examining Station Date of Exam
Patient Number Social Security Number
First Exam Claim number
SPEECH AUDIOMETRY SECT. Comments [
SPEECH RECEP. THRESHOLD
Right Ear [ ]
Left Ear [ ] Referred by [ ]
RIGHT EAR DISCR. Reason for referral
% [ ] Masking [ ]
% [ ] Masking [ ]
Examining Audiologist
LEFT EAR DISCRIM. Exam. Audiologist’s No.
Next Appt.
AUDIOLOGICAL EXAMINATION REPORT
AIR CONDUCTION
BONE CONDUCTION
500 1000 2000 4000 6000
Right ear
500 1000 2000 4000 6000
Left ear
500 1000 2000 4000 6000
Right ear
500 1000 2000 4000 6000
Left ear
H Y P E R C A S E ® E X P E R I E N C E 3 . 2
“Sometimes the people who have been here for some time are
surprised at how much we have actually grown. Yes, I do admit that
it isn’t easy to keep track of what each person is up to or even what
purchases each department has made in the way of hardware and
software. We’re working on it, though. Snowden would like to see
more accountability for computer purchases. He wants to make sure
we know what we have, where it is, why we have it, who’s using it,
and if it’s boosting MRE productivity, or, as he so delicately puts it,
‘to see whether it’s just an expensive toy’ that we can live without.”
HYPERCASE Questions
1. Complete a computer equipment inventory for the Training
and Management Systems Unit, describing all the systems
you find. Hint: Create an inventory form to simplify your
task.
2. Using the software evaluation guidelines given in the text, do
a brief evaluation of GEMS, a software package used by the
Management Systems employees. In a paragraph, briefly
critique this custom software by comparing it with
commercial off-the-shelf software such as Microsoft Project.
3. List the intangible costs and benefits of GEMS as reported by
employees of MRE.
4. Briefly describe the two alternatives Snowden is considering
for the proposed project tracking and reporting system.
5. What organizational and political factors should Snowden
consider in proposing his new system at MRE? (In a brief
paragraph, discuss three central conflicts.)
FIGURE 3.HC1
The reception room resembles a typical corporation. While you are in this HyperCase
screen, find the directory if you want to visit someone.
CPU case makes use of Microsoft Access, Microsoft
Visio, and the popular CASE tool Visible Analyst by
Visible Systems, Inc., for the example screen shots and the
student exercises.
The CPU case takes students through all phases of the
systems development life cycle. This running case gives
students an opportunity to solve problems on their own,
using a variety of tools and data that users of the book can
download from the Web containing Microsoft Visio,
Microsoft Access, and Visible Analyst exercises specifi-
cally keyed to each chapter of the book. Additionally, par-
tially completed exercises in Microsoft Access files are
available for student use on the Web. The CPU case has
been fully tested in classrooms around the world with a va-
riety of students over numerous terms. The case is de-
tailed, rigorous, and rich enough to stand alone as a sys-
tems analysis and design project spanning one or two terms. Alternatively, the CPU case can be
used as a way to teach the use of CASE tools in conjunction with the assignment of a one- or two-
term, real-world project outside the classroom.
EXPANDED WEB SUPPORT
Kendall & Kendall’s Systems Analysis and Design,
Eighth Edition, features Web-based support for solid but
lively pedagogical techniques in the information systems
field.
� The Web site, located at
www.pearsonhighered.com/kendall, contains a
wealth of critical learning and support tools, which
keep class discussions exciting.
� HyperCase 2.8, is an award-winning, virtually in-
teractive organization game. Students are encour-
aged to interview people in the organization, ana-
lyze problems, modify data flow diagrams and data
dictionaries, react to prototypes, and design new
input and output. HyperCase now has a distinctive
3-D look.
� Student Exercises based on the ongoing CPU
case, with partially solved problems and examples
stored in Microsoft Access and Visible Analyst
files, allow students to develop a Web-based com-
puter management system.
EXPANDED INSTRUCTOR SUPPLEMENTAL WEB SUPPORT
Extended support for instructors using this edition can be found at the official Web site located at
www.pearsonhighered.com/kendall. Resources include:
� A complete set of PowerPoint presentation slides for use in lectures
� Image Library, a collection of all text art organized by chapter
� Instructor’s Manual with answers to problems, solutions to cases, and suggestions for
approaching the subject matter
� Test Item File in Microsoft Word and TestGen with WebCT- and Blackboard-ready
conversions
� Solutions to Student Exercises based on the ongoing CPU case, with solutions and ex-
amples stored in Visible Analyst files and Microsoft Access files.
PREFACE xxv
Contains
Installed On
Hardware Inventory Number +
Brand Name +
Model +
Serial Number +
Date Purchased +
Purchase Cost +
Replacement Cost +
Memory Size +
Hard Drive Capacity +
Second Hard Drive Capacity +
Optical Drive +
Operating System +
Refresh Interval +
Warranty Length +
Campus Description +
Room Location +
{Software Inventory Number}
Software Inventory Number +
Title +
Operating System Name +
Version Number +
Publisher +
Software Category Description +
Computer Brand +
Computer Model +
Memory Required +
Site License +
Number of Copies +
Expert Last Name +
Expert First Name +
Office Phone
SoftwareComputer
FIGURE E13.1
Unnormalized entity-relationship
diagram for the computer system.
The many-to-many relationship
will have to be defined as an
associative entity.
E P I S O D E 13
CPU CASE
ALLEN SCHMIDT, JULIE E. KENDALL, AND KENNETH E. KENDALL
Back to Data Basics
After numerous interviews, prototypes, data flow diagrams, data dictionary entries, and UML diagrams
have been completed, Anna and Chip both start work on the entity-relationship model. “I’ll be responsi-
ble for creating the Microsoft Access table relationships,” Anna promises. Chip volunteers to complete
an entity-relationship diagram. “Let’s compare the two diagrams for accuracy and consistency when
we’re done,” Anna suggests, and so they do.
Figure E13.1 shows the entity-relationship diagram for the computer inventory system. Visible Analyst
calls each of the rectangles an entity. Each entity represents a database table of information stored in the sys-
tem, corresponding to a data store on the data flow diagram or an entity class on a sequence or class dia-
gram. Each of the diamond rectangles represents an associative entity representing a relationship between
the data entities. A rectangle with an oval in it represents an associative entity that cannot exist without the
connecting entity. These are usually repeating elements. Microsoft Visio uses rectangles to represent both
an associative and an attributive entity.
“I’ve created the entity-relationship diagram, starting with the simplest portions of the system,” Chip
tells Anna. “The first data entities created are SOFTWARE and COMPUTER. The relationship is that soft-
ware is installed on the computer. Next I determined the cardinality of the relationship. Because one soft-
ware package could be installed on many computers, this relationship is one-to-many. Each computer may
also have many different software packages installed on it so that it also provides a one-to-many relation-
ship. Because there is a one-to-many relationship for each of the data entities, the full relationship between
them becomes many-to-many.”
Chip continues by saying, “This first view is far from normalized. Notice that the SOFTWARE IN-
VENTORY NUMBER is a repeating element on the HARDWARE entity. I will have to create several enti-
ties for each of them.” A bit later Chip reviews his work with Anna. The SOFTWARE INVENTORY
NUMBER has been removed and placed in a relational entity. Refer to the entity-relationship diagram illus-
trated in Figure E13.2. “This places the data in the first normal form,” remarks Chip. “Also, there are no el-
ements that are dependent on only a part of the key, so the data are also in the second normal form. There
are, however, elements that are not part of the entity that is represented on the diagram, and they will have
to be removed. For example, look at the OPERATING SYSTEM and CAMPUS BUILDING. These ele-
ments are not a part of the computer hardware but are installed on the computer or the computer is installed
in a campus room. They should have their own entity. That makes it easier to change the version of an op-
erating system. Rather than having to change the version of the operating system on many of the COM-
PUTER records, it would only have to be changed once.”
www.pearsonhighered.com/kendall
www.pearsonhighered.com/kendall
This page intentionally left blank
ACKNOWLEDGMENTS
Rapid and dramatic changes in IT occurred as we were writing the eighth edition of Systems
Analysis and Design. We are delighted that this edition is being published at the right time
for us to capture many of these changes in systems development.
One major change is that three primary approaches to development are emerging the
SDLC, agile approaches, and object-oriented systems analysis and design—and we are able
to show where and in what situations each is useful to you as a systems analyst.
Another big change is the rapidly increasing use of the Web as a platform for informa-
tion systems. Service-oriented architecture and cloud computing both change the way that
the analyst approaches designing systems solutions. Along with the Web, analysts are being
pushed to design for a wide spectrum of emerging information technologies such as wireless
and mobile technologies, enterprise systems, and virtual contexts such as virtual teams and
virtual organizations.
Another major change addressed in this edition is the ability of users to personalize and
customize their desktops, workspaces, and Web pages, and even for users to alter the profes-
sional designs of systems analysts. Analysts see the big picture that users cannot see, and they
must always be aware of the organizational impacts of changing systems.
Throughout the book you will learn and apply numerous techniques, methods, tools, and
approaches. But when the time comes to interpret what is happening in the organization and
to develop meaningful information systems from the application of rules to your analysis,
your training combines with creativity to produce a system that is in some ways a surprise:
It is structured, yet intuitive; multilayered and complex, in keeping with the character of the
organization and uniquely reflective of you as a systems analyst and a human being.
Our students deserve credit for this new edition by providing feedback and suggestions
for improvements and asking for increased depth in certain topics. Students told us that they
rapidly put to use the new material on object-oriented systems analysis and design as well as
that on agile modeling. Their eagerness to teach us new things keeps the book fresh. We want
to thank our coauthor, Allen Schmidt, who once again worked with us on the CPU Case
Episodes and HyperCase 2.8, for all of his hard work, dedication, and humor during our col-
laboration. He is a wonderful person. Our appreciation also goes to Peter Schmidt and Jason
Reed for their improvements to the early HyperCase. We also want to thank the other two
original authors of HyperCase, Richard Baskerville and Raymond Barnes, who contributed
so much.
We would like to thank our eighth edition production team, especially our executive ed-
itor, Bob Horan, whose wisdom and calm demeanor are always inspiring. We are also grate-
ful to Kelly Loftus, our extremely capable assistant editor, for her unruffled competency and
for her optimism in keeping the project going. Ana Jankowski, our production editor, also
deserves thanks for helping us succeed in making this a strong, complete, and accurate revi-
sion. Their help and enthusiasm facilitated the completion of the project in a smooth and
timely manner.
xxvii
We are also grateful for the encouragement and support of the entire Rutgers commu-
nity, including our Chancellor Wendell Prittchett, our colleagues in the School of Business-
Camden and throughout all of Rutgers, our staff, and our Board of Governors. They have
been very enthusiastic about this edition as well as the many translations of Systems Analysis
and Design available in Spanish, Chinese, and Indonesian.
All the reviewers for the eighth edition deserve our thanks as well. Their thoughtful com-
ments and suggestions helped to strengthen the book. They are:
Stephen T. Brower, Raritan Valley Community College
Robert F. Cope III, Southeastern Louisiana University
Junhua Ding, East Carolina University
Jon Gant, University of Illinois
Cliff Layton, Rogers State University
Keng Siau, University of Nebraska–Lincoln
Many of our colleagues and friends have encouraged us through the process of writing
this book. We thank them for their comments on our work. They include: Ayman Abu
Hamdieh; Macedonio Alanis; Michel Avital; the Ciupeks; Charles J. Coleman; Roger T.
Danforth; Gordon Davis; EgoPo; Paul Gray; Nancy V. Gulick; Andy and Pam Hamingson;
Blake Ives; Richard Kalina; Carol Latta; Ken and Jane Laudon; Richard Levao; Joel and
Bobbie Porter; Caryn Schmidt; Marc and Jill Schniederjans; Gabriel Shanks; Detmar W.
Straub, Jr.; the Vargos; Merrill Warkentin; Jeff and Bonnie Weil; Ping Zhang, and all of our
friends and colleagues in the Association for Information Systems, the Decision Sciences
Institute, IFIP Working Group 8.2, and all those involved in the PhD Project (founded by the
KPMG Foundation), which serves minority doctoral students in information systems.
Our heartfelt thanks go to the memory of Julia A. Kendall and to the memory of Edward
J. Kendall. Their belief that love, goals, and hard work are an unbeatable combination con-
tinues to infuse our every endeavor.
xxviii ACKNOWLEDGMENTS
Julie and Ken Kendall personally thank Shrek (Brian d’Arcy James) and all of our dear friends in the
theatre and the performing arts.
1
C H A P T E R 1
Systems, Roles, and
Development Methodologies
LEARNING OBJECTIVES
Once you have mastered the material in this chapter you will be able to:
1. Recall the basic types of computer-based systems that a systems analyst needs to address.
2. Understand how users working in context with new technologies change the dynamics of a
system.
3. Realize what the many roles of a systems analyst are.
4. Comprehend the fundamentals of three development methodologies: SDLC, the agile
approach, and object-oriented systems analysis and design.
5. Understand what CASE tools are and how they help a systems analyst.
Organizations have long recognized the importance of managing key re-
sources such as people and raw materials. Information has now moved to
its rightful place as a key resource. Decision makers now understand that
information is not just a by-product of conducting business; rather, it fuels
business and can be the critical factor in determining the success or failure
of a business.
To maximize the usefulness of information, a business must manage it correctly, just as it
manages other resources. Managers need to understand that costs are associated with the pro-
duction, distribution, security, storage, and retrieval of all information. Although information is
all around us, it is not free, and its strategic use for positioning a business competitively should
not be taken for granted.
The ready availability of networked computers, along with access to the Internet and
the Web, has created an information explosion throughout society in general and business
in particular. Managing computer-generated information differs in significant ways from
handling manually produced data. Usually there is a greater quantity of computer informa-
tion to administer. Costs of organizing and maintaining it can increase at alarming rates,
and users often treat it less skeptically than information obtained in different ways. This
chapter examines the fundamentals of different kinds of information systems, the varied
roles of systems analysts, and the phases in the systems development life cycle (SDLC) as
they relate to Human–Computer Interaction (HCI) factors; it also introduces Computer-
Aided Software Engineering (CASE) tools.
PA R T I
Systems Analysis
Fundamentals
2 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
TYPES OF SYSTEMS
Information systems are developed for different purposes, depending on the needs of human users
and the business. Transaction processing systems (TPS) function at the operational level of the
organization; office automation systems (OAS) and knowledge work systems (KWS) support
work at the knowledge level. Higher-level systems include management information systems
(MIS) and decision support systems (DSS). Expert systems apply the expertise of decision mak-
ers to solve specific, structured problems. On the strategic level of management we find execu-
tive support systems (ESS). Group decision support systems (GDSS) and the more generally
described computer-supported collaborative work systems (CSCWS) aid group-level decision
making of a semistructured or unstructured variety.
The variety of information systems that analysts may develop is shown in Figure 1.1. Notice
that the figure presents these systems from the bottom up, indicating that the operational, or low-
est, level of the organization is supported by TPS, and the strategic, or highest, level of semistruc-
tured and unstructured decisions is supported by ESS, GDSS, and CSCWS at the top. This text uses
the terms management information systems, information systems (IS), computerized information
systems, and computerized business information systems interchangeably to denote computerized
information systems that support the broadest range of user interactions with technologies and busi-
ness activities through the information they produce in organizational contexts.
Transaction Processing Systems
Transaction processing systems (TPS) are computerized information systems that were developed
to process large amounts of data for routine business transactions such as payroll and inventory. A
TPS eliminates the tedium of necessary operational transactions and reduces the time once required
to perform them manually, although people must still input data to computerized systems.
Transaction processing systems are boundary-spanning systems that permit the organization
to interact with external environments. Because managers look to the data generated by the TPS
for up-to-the-minute information about what is happening in their companies, it is essential to the
day-to-day operations of business that these systems function smoothly and without interruption.
Office Automation Systems and Knowledge Work Systems
At the knowledge level of the organization are two classes of systems. Office automation systems
(OAS) support data workers, who do not usually create new knowledge but rather analyze infor-
mation to transform data or manipulate it in some way before sharing it with, or formally dissem-
inating it throughout, the organization and, sometimes, beyond. Familiar aspects of OAS include
ESS
GDSS
CSCWS
Expert Systems
Decision Support Systems
Management Information Systems
Knowledge Work Systems
Office Automation Systems
Transaction Processing Systems
FIGURE 1.1
A systems analyst may be
involved with any or all of these
systems.
CHAPTER 1 • SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES 3
word processing, spreadsheets, desktop publishing, electronic scheduling, and communication
through voice mail, email (electronic mail), and teleconferencing.
Knowledge work systems (KWS) support professional workers such as scientists, engineers,
and doctors by aiding them in their efforts to create new knowledge (often in teams) and by al-
lowing them to contribute it to their organization or to society at large.
Management Information Systems
Management information systems (MIS) do not replace transaction processing systems; rather,
all MIS include transaction processing. MIS are computerized information systems that work be-
cause of the purposeful interaction between people and computers. By requiring people, software,
and hardware to function in concert, management information systems support users in accom-
plishing a broader spectrum of organizational tasks than transaction processing systems, includ-
ing decision analysis and decision making.
To access information, users of the management information system share a common data-
base. The database stores both data and models that help the user interact with, interpret, and ap-
ply that data. Management information systems output information that is used in decision
making. A management information system can also help integrate some of the computerized in-
formation functions of a business.
Decision Support Systems
A higher-level class of computerized information systems is decision support systems (DSS). DSS
are similar to the traditional management information system because they both depend on a data-
base as a source of data. A decision support system departs from the traditional management infor-
mation system because it emphasizes the support of decision making in all its phases, although the
actual decision is still the exclusive province of the decision maker. Decision support systems are
more closely tailored to the person or group using them than is a traditional management informa-
tion system. Sometimes they are discussed as systems that focus on business intelligence.
Artificial Intelligence and Expert Systems
Artificial intelligence (AI) can be considered the overarching field for expert systems. The gen-
eral thrust of AI has been to develop machines that behave intelligently. Two avenues of AI re-
search are (1) understanding natural language and (2) analyzing the ability to reason through a
problem to its logical conclusion. Expert systems use the approaches of AI reasoning to solve the
problems put to them by business (and other) users.
Expert systems are a very special class of information system that has been made practica-
ble for use by business as a result of widespread availability of hardware and software such as
personal computers (PCs) and expert system shells. An expert system (also called a knowledge-
based system) effectively captures and uses the knowledge of a human expert or experts for solv-
ing a particular problem experienced in an organization. Notice that unlike DSS, which leave the
ultimate judgment to the decision maker, an expert system selects the best solution to a problem
or a specific class of problems.
The basic components of an expert system are the knowledge base, an inference engine con-
necting the user with the system by processing queries via languages such as structured query lan-
guage (SQL), and the user interface. People called knowledge engineers capture the expertise of
experts, build a computer system that includes this expert knowledge, and then implement it.
Group Decision Support Systems and Computer-Supported
Collaborative Work Systems
Organizations are becoming increasingly reliant on groups or teams to make decisions together.
When groups make semistructured or unstructured decisions, a group decision support system may
afford a solution. Group decision support systems (GDSS), which are used in special rooms
equipped in a number of different configurations, permit group members to interact with electronic
support—often in the form of specialized software—and a special group facilitator. Group decision
support systems are intended to bring a group together to solve a problem with the help of various
supports such as polling, questionnaires, brainstorming, and scenario creation. GDSS software can
be designed to minimize typical negative group behaviors such as lack of participation due to fear
4 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
of reprisal for expressing an unpopular or contested viewpoint, domination by vocal group mem-
bers, and “group think” decision making. Sometimes GDSS are discussed under the more general
term computer-supported collaborative work systems (CSCWS), which might include software sup-
port called groupware for team collaboration via networked computers. Group decision support sys-
tems can also be used in a virtual setting.
Executive Support Systems
When executives turn to the computer, they are often looking for ways to help them make deci-
sions on the strategic level. Executive support systems (ESS) help executives organize their in-
teractions with the external environment by providing graphics and communications technologies
in accessible places such as boardrooms or personal corporate offices. Although ESS rely on the
information generated by TPS and MIS, executive support systems help their users address un-
structured decision problems, which are not application specific, by creating an environment that
helps them think about strategic problems in an informed way. ESS extend and support the capa-
bilities of executives, permitting them to make sense of their environments.
INTEGRATING TECHNOLOGIES FOR SYSTEMS
As users adopt new technologies, some of the systems analyst’s work will be devoted to integrat-
ing traditional systems with new ones to ensure a useful context, as shown in Figure 1.2. This sec-
tion describes some of the new information technologies systems analysts will be using as people
work to integrate their ecommerce applications into their traditional businesses or as they begin
entirely new ebusinesses.
Ecommerce Applications and Web Systems
Many of the systems discussed here can be imbued with greater functionality if they are migrated
to the World Wide Web or if they are originally conceived and implemented as Web-based tech-
nologies. There are many benefits to mounting or improving an application on the Web:
1. Increasing user awareness of the availability of a service, product, industry, person, or group.
2. The possibility of 24-hour access for users.
FIGURE 1.2
Systems analysts need to be aware
that integrating technologies affect
all types of users and systems.
CHAPTER 1 • SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES 5
3. Improving the usefulness and usability of the interface design.
4. Creating a system that can extend globally rather than remain local, thus reaching people in
remote locations without worry of the time zone in which they are located.
Enterprise Systems
Many organizations envision potential benefits from the integration of many information systems
existing on different management levels and within different functions. Some authors discuss in-
tegration as service-oriented architecture (SOA), which exists in layers. Enterprise systems would
comprise the top layer. Enterprise systems, also called enterprise resource planning (ERP) sys-
tems, are designed to perform this integration. Instituting ERP requires enormous commitment
and organizational change. Often systems analysts serve as consultants to ERP endeavors that use
proprietary software. Popular ERP software includes that from SAP and Oracle. Some of these
packages are targeted toward moving enterprises onto the Web. Typically, analysts as well as
some users require vendor training, support, and maintenance to be able to properly design, in-
stall, maintain, update, and use a particular ERP package.
Systems for Wireless and Mobile Devices
Analysts are being asked to design a plethora of new systems and applications for adventurous
users, including many for wireless and mobile devices such as the Apple iPhone, iPod, or the
BlackBerry. In addition, analysts may find themselves designing standard or wireless communi-
cations networks for users that integrate voice, video, text messaging, and email into organiza-
tional intranets or industry extranets. Wireless ecommerce is referred to as mcommerce (mobile
commerce).
Wireless local area networks (WLANs); wireless fidelity networks, called Wi-Fi; and per-
sonal wireless networks that bring together many types of devices under the standard called Blue-
tooth are all systems that you may be asked to design. In more advanced settings, analysts may
be called on to design intelligent agents, software that can assist users with tasks in which the soft-
ware learns users’ preferences over time and then acts on those preferences. For example, in the
use of pull technology, an intelligent agent would search the Web for stories of interest to the user,
having observed the user’s behavior patterns with information over time, and would conduct
searches on the Web without continual prompting from the user.
Open Source Software
An alternative to traditional software development in which proprietary code is hidden from the
users is called open source software (OSS). With OSS, the code, or computer instructions, can be
studied, shared, and modified by many users and programmers. Rules of this community include
the idea that any program modifications must be shared with all the people on the project.
Development of OSS has also been characterized as a philosophy rather than simply as the
process of creating new software. Often those involved in OSS communities view it as a way to
help societies change. Widely known open source projects include Apache for developing a Web
server, the browser called Mozilla Firefox, and Linux, which is a Unix-like open source operat-
ing system.
However, it would be an oversimplification to think of OSS as a monolithic movement, and
it does little to reveal what type of users or user analysts are developing OSS projects and on what
basis. To help us understand the open source movement, researchers have recently categorized
open source communities into four community types—ad hoc, standardized, organized, and com-
mercial—along six different dimensions—general structure, environment, goals, methods, user
community, and licensing. Some researchers argue that OSS is at a crossroads and that the com-
mercial and community OSS groups need to understand where they converge and where the po-
tential for conflict exists.
Open source development is useful for many applications running on diverse technologies,
including handheld devices and communication equipment. Its use may encourage progress in
creating standards for devices to communicate more easily. Widespread use of OSS may allevi-
ate some of the severe shortages of programmers by placing programming tools in the hands of
students in developing countries sooner than if they were limited to using proprietary packages,
and it may lead to solving large problems through intense and extensive collaboration.
6 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
NEED FOR SYSTEMS ANALYSIS AND DESIGN
Systems analysis and design, as performed by systems analysts, seeks to understand what humans
need to analyze data input or data flow systematically, process or transform data, store data, and out-
put information in the context of a particular organization or enterprise. By doing thorough analy-
sis, analysts seek to identify and solve the right problems. Furthermore, systems analysis and design
is used to analyze, design, and implement improvements in the support of users and the functioning
of businesses that can be accomplished through the use of computerized information systems.
Installing a system without proper planning leads to great user dissatisfaction and frequently
causes the system to fall into disuse. Systems analysis and design lends structure to the analysis
and design of information systems, a costly endeavor that might otherwise have been done in a
haphazard way. It can be thought of as a series of processes systematically undertaken to improve
a business through the use of computerized information systems. Systems analysis and design in-
volves working with current and eventual users of information systems to support them in work-
ing with technologies in an organizational setting.
User involvement throughout the systems project is critical to the successful development of
computerized information systems. Systems analysts, whose roles in the organization are dis-
cussed next, are the other essential component in developing useful information systems.
Users are moving to the forefront as software development teams become more international
in their composition. This means that there is more emphasis on working with software users; on
performing analysis of their business, problems, and objectives; and on communicating the analy-
sis and design of the planned system to all involved.
New technologies also are driving the need for systems analysis. Ajax (Asynchronous
JavaScript and XML) is not a new programming language, but a technique that uses existing lan-
guages to make Web pages function more like a traditional desktop application program. Build-
ing and redesigning Web pages that utilize Ajax technologies will be a task facing analysts. New
programming languages, such as the open source Web framework, Ruby on Rails, which is a com-
bination programming language and code generator for creating Web applications, will require
more analysis.
ROLES OF THE SYSTEMS ANALYST
The systems analyst systematically assesses how users interact with technology and how businesses
function by examining the inputting and processing of data and the outputting of information with the
intent of improving organizational processes. Many improvements involve better support of users’
work tasks and business functions through the use of computerized information systems. This defini-
tion emphasizes a systematic, methodical approach to analyzing—and potentially improving—what
is occurring in the specific context experienced by users and created by a business.
Our definition of a systems analyst is necessarily broad. The analyst must be able to work
with people of all descriptions and be experienced in working with computers. The analyst plays
many roles, sometimes balancing several at the same time. The three primary roles of the systems
analyst are consultant, supporting expert, and agent of change.
Systems Analyst as Consultant
The systems analyst frequently acts as a systems consultant to humans and their businesses and,
thus, may be hired specifically to address information systems issues within a business. Such hir-
ing can be an advantage because outside consultants can bring with them a fresh perspective that
other people in an organization do not possess. It also means that outside analysts are at a disad-
vantage because an outsider can never know the true organizational culture. As an outside con-
sultant, you will rely heavily on the systematic methods discussed throughout this text to analyze
and design appropriate information systems for users working in a particular business. In addi-
tion, you will rely on information systems users to help you understand the organizational culture
from others’ viewpoints.
Systems Analyst as Supporting Expert
Another role that you may be required to play is that of supporting expert within a business for
which you are regularly employed in some systems capacity. In this role the analyst draws on pro-
fessional expertise concerning computer hardware and software and their uses in the business.
CHAPTER 1 • SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES 7
C O N S U L T I N G O P P O R T U N I T Y 1 . 1
Healthy Hiring: Ecommerce Help Wanted
“You’ll be happy to know that we made a strong case to manage-
ment that we should hire a new systems analyst to specialize in ecom-
merce development,” says Al Falfa, a systems analyst for the
multioutlet international chain of Marathon Vitamin Shops. He is
meeting with his large team of systems analysts to decide on the qual-
ifications that their new team member should possess. Al continues,
saying, “In fact, they were so excited by the possibility of our team
helping to move Marathon into an ecommerce strategy that they’ve
said we should start our search now and not wait until the fall.”
Ginger Rute, another analyst, agrees, saying, “The demand for
Web site developers is still outstripping the supply. We should move
quickly. I think our new person should be knowledgeable in system
modeling, JavaScript, C��, Rational Rose, and familiar with Ajax,
just to name a few.”
Al looks surprised at Ginger’s long list of skills but then
replies, “Well, that’s certainly one way we could go. But I would
also like to see a person with some business savvy. Most of the peo-
ple coming out of school will have solid programming skills, but
they should know about accounting, inventory, and distribution of
goods and services, too.”
The newest member of the systems analysis group, Vita Ming,
finally breaks into the discussion. She says, “One of the reasons I
chose to come to work with all of you was that I thought we all got
along quite well together. Because I had some other opportunities,
I looked very carefully at what the atmosphere was here. From what
I’ve seen, we’re a friendly group. Let’s be sure to hire someone who
has a good personality and who fits in well with us.”
Al concurs, continuing, “Vita’s right. The new person should
be able to communicate well with us, and with business clients, too.
We are always communicating in some way, through formal presen-
tations, drawing diagrams, or interviewing users. If they understand
decision making, it will make their job easier, too. Also, Marathon
is interested in integrating ecommerce into the entire business. We
need someone who at least grasps the strategic importance of the
Web. Page design is such a small part of it.”
Ginger interjects again with a healthy dose of practicality, say-
ing, “Leave that to management. I still say the new person should
be a good programmer.” Then she ponders aloud, “I wonder how
important UML will be?”
After listening patiently to everyone’s wish list, one of the sen-
ior analysts, Cal Siem, speaks up, joking, “We’d better see if Super-
man is available!”
As the group shares a laugh, Al sees an opportunity to try for
some consensus, saying, “We’ve had a chance to hear a number of
different qualifications. Let’s each take a moment and make a list
of the qualifications we personally think are essential for the new
ecommerce development person to possess. We’ll share them and
continue discussing until we can describe the person in enough de-
tail to turn a description over to the human resources group for
processing.”
What qualifications should the systems analysis team be look-
ing for when hiring their new ecommerce development team mem-
ber? Is it more important to know specific languages or to have an
aptitude for picking up languages and software packages quickly?
How important is it that the person being hired has some basic
business understanding? Should all team members possess identi-
cal competencies and skills? What personality or character traits
are desirable in a systems analyst who will be working in ecom-
merce development?
This work is often not a full-blown systems project, but rather it entails a small modification or
decision affecting a single department.
As the supporting expert, you are not managing the project; you are merely serving as a re-
source for those who are. If you are a systems analyst employed by a manufacturing or service
organization, many of your daily activities may be encompassed by this role.
Systems Analyst as Agent of Change
The most comprehensive and responsible role that the systems analyst takes on is that of an agent
of change, whether internal or external to the business. As an analyst, you are an agent of change
whenever you perform any of the activities in the systems development life cycle (discussed in
the next section) and are present and interacting with users and the business for an extended pe-
riod (from two weeks to more than a year). An agent of change can be defined as a person who
serves as a catalyst for change, develops a plan for change, and works with others in facilitating
that change.
Your presence in the business changes it. As a systems analyst, you must recognize this fact
and use it as a starting point for your analysis. Hence, you must interact with users and manage-
ment (if they are not one and the same) from the very beginning of your project. Without their
help you cannot understand what they need to support their work in the organization, and real
change cannot take place.
8 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
1
7
6 5
4
Developing and
documenting
software
3
22 Determining human
information
requirements
Analyzing
system needs
Designing the
recommended
system
Testing and
maintaining
the system
Implementing
and evaluating
the system
Identifying problems,
opportunities, and
objectives
FIGURE 1.3
The seven phases of the systems
development life cycle (SDLC).
If change (that is, improvements to the business that can be realized through information sys-
tems) seems warranted after analysis, the next step is to develop a plan for change along with the
people who must enact the change. Once a consensus is reached on the change that is to be made,
you must constantly interact with those who are changing.
As a systems analyst acting as an agent of change, you advocate a particular avenue of change
involving the use of information systems. You also teach users the process of change, because
changes in the information system do not occur independently; rather, they cause changes in the
rest of the organization as well.
Qualities of the Systems Analyst
From the foregoing descriptions of the roles the systems analyst plays, it is easy to see that the
successful systems analyst must possess a wide range of qualities. Many different kinds of peo-
ple are systems analysts, so any description is destined to fall short in some way. There are some
qualities, however, that most systems analysts seem to display.
Above all, the analyst is a problem solver. He or she is a person who views the analysis
of problems as a challenge and who enjoys devising workable solutions. When necessary, the
analyst must be able to systematically tackle the situation at hand through skillful application
of tools, techniques, and experience. The analyst must also be a communicator capable of re-
lating meaningfully to other people over extended periods of time. Systems analysts need to
be able to understand humans’ needs in interacting with technology, and they need enough
computer experience to program, to understand the capabilities of computers, to glean infor-
mation requirements from users, and to communicate what is needed to programmers. They
also need to possess strong personal and professional ethics to help them shape their client
relationships.
The systems analyst must be a self-disciplined, self-motivated individual who is able to man-
age and coordinate other people, as well as innumerable project resources. Systems analysis is a
demanding career, but, in compensation, an ever-changing and always challenging one.
THE SYSTEMS DEVELOPMENT LIFE CYCLE
Throughout this chapter we have referred to the systematic approach analysts take to the
analysis and design of information systems. Much of this is embodied in what is called the
systems development life cycle (SDLC). The SDLC is a phased approach to analysis and de-
sign that holds that systems are best developed through the use of a specific cycle of analyst
and user activities.
Analysts disagree on exactly how many phases there are in the SDLC, but they generally laud
its organized approach. Here we have divided the cycle into seven phases, as shown in Figure 1.3.
Although each phase is presented discretely, it is never accomplished as a separate step. Instead,
several activities can occur simultaneously, and activities may be repeated.
CHAPTER 1 • SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES 9
Incorporating Human–Computer Interaction Considerations
In recent years, the study of human–computer interaction (HCI) has become increasingly impor-
tant for systems analysts. Although the definition is still evolving, researchers characterize HCI as
the “aspect of a computer that enables communications and interactions between humans and the
computer. It is the layer of the computer that is between humans and the computer” (Zhang, Carey,
Te’eni, & Tremaine, 2005, p. 518). Analysts using an HCI approach are emphasizing people rather
than the work to be done or the IT that is involved. Their approach to a problem is multifaceted,
looking at the “human ergonomic, cognitive, affective, and behavioral factors involved in user
tasks, problem solving processes and interaction context” (Zhang, Carey, Te’eni, & Tremaine,
2005, p. 518). Human computer interaction moves away from focusing first on organizational and
system needs and instead concentrates on human needs. Analysts adopting HCI principles exam-
ine a variety of user needs in the context of humans interacting with information technology to
complete tasks and solve problems. These include taking into account physical or ergonomic fac-
tors; usability factors that are often labeled cognitive matters; the pleasing, aesthetic, and enjoy-
able aspects of using the system; and behavioral aspects that center on the usefulness of the system.
Another way to think about HCI is to think of it as a human-centered approach that puts peo-
ple ahead of organizational structure or culture when creating new systems. When analysts em-
ploy HCI as a lens to filter the world, their work will possess a different quality than the work of
those who do not possess this perspective.
Your career can benefit from a strong grounding in HCI. The demand for analysts who are
capable of incorporating HCI into the systems development process keeps rising, as companies
increasingly realize that the quality of systems and the quality of work life can both be improved
by taking a human-centered approach at the outset of a project.
The application of human–computer interaction principles tries to uncover and address the frus-
trations that users voice over their use of information technology. These concerns include a suspi-
cion that systems analysts misunderstand the work being done, the tasks involved, and how they can
best be supported; a feeling of helplessness or lack of control when working with the system; inten-
tional breaches of privacy; trouble navigating through system screens and menus; and a general mis-
match between the system designed and the way users themselves think of their work processes.
Misjudgments and errors in design that cause users to neglect new systems or that cause sys-
tems to fall into disuse soon after their implementation can be eradicated or minimized when sys-
tems analysts adopt an HCI approach.
Researchers in HCI see advantages to the inclusion of HCI in every phase of the SDLC. This
is a worthwhile approach, and we will try to mirror this by bringing human concerns explicitly into
each phase of the SDLC. As a person who is learning systems analysis, you can also bring a fresh
eye to the SDLC to identify opportunities for designers to address HCI concerns and ways for users
to become more central to each phase of the SDLC. Chapter 14 is devoted to examining the role of
the systems analyst in designing human-centered systems and interfaces from an HCI perspective.
Identifying Problems, Opportunities, and Objectives
In this first phase of the systems development life cycle, the analyst is concerned with correctly
identifying problems, opportunities, and objectives. This stage is critical to the success of the rest
of the project, because no one wants to waste subsequent time addressing the wrong problem.
The first phase requires that the analyst look honestly at what is occurring in a business.
Then, together with other organizational members, the analyst pinpoints problems. Often others
will bring up these problems, and they are the reason the analyst was initially called in. Opportu-
nities are situations that the analyst believes can be improved through the use of computerized in-
formation systems. Seizing opportunities may allow the business to gain a competitive edge or
set an industry standard.
Identifying objectives is also an important component of the first phase. The analyst must
first discover what the business is trying to do. Then the analyst will be able to see whether some
aspect of information systems applications can help the business reach its objectives by address-
ing specific problems or opportunities.
The people involved in the first phase are the users, analysts, and systems managers coordinat-
ing the project. Activities in this phase consist of interviewing user management, summarizing the
10 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
knowledge obtained, estimating the scope of the project, and documenting the results. The output
of this phase is a feasibility report containing a problem definition and summarizing the objectives.
Management must then make a decision on whether to proceed with the proposed project. If the user
group does not have sufficient funds in its budget or wishes to tackle unrelated problems, or if the
problems do not require a computer system, a different solution may be recommended, and the sys-
tems project does not proceed any further.
Determining Human Information Requirements
The next phase the analyst enters is that of determining the human needs of the users involved, using
a variety of tools to understand how users interact in the work context with their current information
systems. The analyst will use interactive methods such as interviewing, sampling and investigating
hard data, and questionnaires, along with unobtrusive methods, such as observing decision makers’
behavior and their office environments, and all-encompassing methods, such as prototyping.
The analyst will use these methods to pose and answer many questions concerning human-
computer interaction (HCI), including questions such as, “What are the users’ physical strengths
and limitations?” In other words, “What needs to be done to make the system audible, legible,
and safe?” “How can the new system be designed to be easy to use, learn, and remember?” “How
can the system be made pleasing or even fun to use?” “How can the system support a user’s in-
dividual work tasks and make them more productive in new ways?”
In the information requirements phase of the SDLC, the analyst is striving to understand what
information users need to perform their jobs. At this point the analyst is examining how to make
the system useful to the people involved. How can the system better support individual tasks that
need doing? What new tasks are enabled by the new system that users were unable to do without
it? How can the new system be created to extend a user’s capabilities beyond what the old system
provided? How can the analyst create a system that is rewarding for workers to use?
The people involved in this phase are the analysts and users, typically operations managers
and operations workers. The systems analyst needs to know the details of current system func-
tions: the who (the people who are involved), what (the business activity), where (the environ-
ment in which the work takes place), when (the timing), and how (how the current procedures are
performed) of the business under study. The analyst must then ask why the business uses the cur-
rent system. There may be good reasons for doing business using the current methods, and these
should be considered when designing any new system.
Agile development is an object-oriented approach (OOA) to systems development that in-
cludes a method of development (including generating information requirements) as well as soft-
ware tools. In this text it is paired with prototyping in Chapter 6. (There is more about
object-oriented approaches in Chapter 10.)
If the reason for current operations is that “it’s always been done that way,” however, the an-
alyst may wish to improve on the procedures. At the completion of this phase, the analyst should
understand how users accomplish their work when interacting with a computer and begin to know
how to make the new system more useful and usable. The analyst should also know how the busi-
ness functions and have complete information on the people, goals, data, and procedures involved.
Analyzing System Needs
The next phase that the systems analyst undertakes involves analyzing system needs. Again, spe-
cial tools and techniques help the analyst make requirement determinations. Tools such as data
flow diagrams (DFD) to chart the input, processes, and output of the business’s functions, or ac-
tivity diagrams or sequence diagrams to show the sequence of events, illustrate systems in a struc-
tured, graphical form. From data flow, sequence, or other diagrams, a data dictionary is developed
that lists all the data items used in the system, as well as their specifications.
During this phase the systems analyst also analyzes the structured decisions made. Struc-
tured decisions are those for which the conditions, condition alternatives, actions, and action
rules can be determined. There are three major methods for analysis of structured decisions:
structured English, decision tables, and decision trees.
At this point in the SDLC, the systems analyst prepares a systems proposal that summarizes
what has been found out about the users, usability, and usefulness of current systems; provides
cost-benefit analyses of alternatives; and makes recommendations on what (if anything) should
be done. If one of the recommendations is acceptable to management, the analyst proceeds along
CHAPTER 1 • SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES 11
that course. Each systems problem is unique, and there is never just one correct solution. The
manner in which a recommendation or solution is formulated depends on the individual qualities
and professional training of each analyst and the analyst’s interaction with users in the context of
their work environment.
Designing the Recommended System
In the design phase of the SDLC, the systems analyst uses the information collected earlier to ac-
complish the logical design of the information system. The analyst designs procedures for users
to help them accurately enter data so that data going into the information system are correct. In
addition, the analyst provides for users to complete effective input to the information system by
using techniques of good form and Web page or screen design.
Part of the logical design of the information system is devising the HCI. The interface con-
nects the user with the system and is thus extremely important. The user interface is designed with
the help of users to make sure that the system is audible, legible, and safe, as well as attractive
and enjoyable to use. Examples of physical user interfaces include a keyboard (to type in ques-
tions and answers), onscreen menus (to elicit user commands), and a variety of graphical user in-
terfaces (GUIs) that use a mouse or touch screen.
The design phase also includes designing databases that will store much of the data needed
by decision makers in the organization. Users benefit from a well-organized database that is log-
ical to them and corresponds to the way they view their work. In this phase the analyst also works
with users to design output (either onscreen or printed) that meets their information needs.
Finally, the analyst must design controls and backup procedures to protect the system and the
data, and to produce program specification packets for programmers. Each packet should contain
input and output layouts, file specifications, and processing details; it may also include decision
trees or tables, UML or data flow diagrams, and the names and functions of any prewritten code
that is either written in-house or using code or other class libraries.
Developing and Documenting Software
In the fifth phase of the SDLC, the analyst works with programmers to develop any original software
that is needed. During this phase the analyst works with users to develop effective documentation for
software, including procedure manuals, online help, and Web sites featuring Frequently Asked Ques-
tions (FAQs), on Read Me files shipped with new software. Because users are involved from the be-
ginning, phase documentation should address the questions they have raised and solved jointly with
the analyst. Documentation tells users how to use software and what to do if software problems occur.
Programmers have a key role in this phase because they design, code, and remove syntactical
errors from computer programs. To ensure quality, a programmer may conduct either a design or
a code walkthrough, explaining complex portions of the program to a team of other programmers.
Testing and Maintaining the System
Before the information system can be used, it must be tested. It is much less costly to catch prob-
lems before the system is signed over to users. Some of the testing is completed by programmers
alone, some of it by systems analysts in conjunction with programmers. A series of tests to pin-
point problems is run first with sample data and eventually with actual data from the current sys-
tem. Often test plans are created early in the SDLC and are refined as the project progresses.
Maintenance of the system and its documentation begins in this phase and is carried out rou-
tinely throughout the life of the information system. Much of the programmer’s routine work con-
sists of maintenance, and businesses spend a great deal of money on maintenance. Some
maintenance, such as program updates, can be done automatically via a vendor site on the Web.
Many of the systematic procedures the analyst employs throughout the SDLC can help ensure
that maintenance is kept to a minimum.
Implementing and Evaluating the System
In this last phase of systems development, the analyst helps implement the information system. This
phase involves training users to handle the system. Vendors do some training, but oversight of train-
ing is the responsibility of the systems analyst. In addition, the analyst needs to plan for a smooth con-
version from the old system to the new one. This process includes converting files from old formats to
new ones, or building a database, installing equipment, and bringing the new system into production.
12 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
Evaluation is included as part of this final phase of the SDLC mostly for the sake of discus-
sion. Actually, evaluation takes place during every phase. A key criterion that must be satisfied is
whether the intended users are indeed using the system.
It should be noted that systems work is often cyclical. When an analyst finishes one phase of
systems development and proceeds to the next, the discovery of a problem may force the analyst
to return to the previous phase and modify the work done there.
The Impact of Maintenance
After the system is installed, it must be maintained, meaning that the computer programs must be
modified and kept up to date. Figure 1.4 illustrates the average amount of time spent on mainte-
nance at a typical MIS installation. Estimates of the time spent by departments on maintenance
have ranged from 48 to 60 percent of the total time spent developing systems. Very little time re-
mains for new systems development. As the number of programs written increases, so does the
amount of maintenance they require.
Maintenance is performed for two reasons. The first of these is to correct software errors. No
matter how thoroughly the system is tested, bugs or errors creep into computer programs. Bugs
FIGURE 1.MAC
Running Windows on a Mac using Virtualization Software called VM Fusion.
M A C A P P E A L
At home and in our visits to university campuses and businesses around the world, we’ve noticed that
students and organizations are increasingly showing an interest in Macs. Therefore, we thought it
would add a little bit of interest to show some Mac options that a systems designer has. At the time
we’re writing this book, about one out of seven personal computers purchased in the United States is
a Mac. Macs are quality Intel-based machines that run under a competent operating system and can
also run Windows, so in effect everything that can be done on a PC can be done on a Mac. One way
to run Windows is to boot directly into Windows (once it’s installed); another is to use virtualization
using software such as VM Fusion, which is shown in Figure 1.MAC.
Adopters of Macs have cited many reasons for using Macs including better security built into
the Mac operating system, intelligent backup using the built-in time machine, the multitude of appli-
cations already included, the reliability of setup and networking, and the ability to sync Macs with
other Macs and iPhones. The most compelling reason, we think, is the design itself.
CHAPTER 1 • SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES 13
Maintenance of
Existing Systems
60%
New Systems and
Other Activities
40%
FIGURE 1.4
Some researchers estimate that the
amount of time spent on system
maintenance may be as much as
60 percent of the total time spent
on systems projects.
in commercial PC software are often documented as “known anomalies,” and are corrected when
new versions of the software are released or in an interim release. In custom software (also called
bespoke software), bugs must be corrected as they are detected.
The other reason for performing system maintenance is to enhance the software’s capabili-
ties in response to changing organizational needs, generally involving one of the following three
situations:
1. Users often request additional features after they become familiar with the computer
system and its capabilities.
2. The business changes over time.
3. Hardware and software are changing at an accelerated pace.
Figure 1.5 illustrates the amount of resources—usually time and money—spent on systems
development and maintenance. The area under the curve represents the total dollar amount spent.
You can see that over time the total cost of maintenance is likely to exceed that of systems devel-
opment. At a certain point it becomes more feasible to perform a new systems study, because the
cost of continued maintenance is clearly greater than that of creating an entirely new information
system.
In summary, maintenance is an ongoing process over the life cycle of an information system.
After the information system is installed, maintenance usually takes the form of correcting pre-
viously undetected program errors. Once these are corrected, the system approaches a steady
state, providing dependable service to its users. Maintenance during this period may consist of re-
moving a few previously undetected bugs and updating the system with a few minor enhance-
ments. As time goes on and the business and technology change, however, the maintenance effort
increases dramatically.
Amount of
Resources
Consumed,
Time and
Money
Systems
Development
Postinstallation
Bugs
Minor Changes
Due to Bugs and
Enhancements
Major Changes
in Both Business
and Technology
Time
Installation
Day
FIGURE 1.5
Resource consumption over the
system life.
14 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
USING CASE TOOLS
Analysts who adopt the SDLC approach often benefit from productivity tools, called Computer-
Aided Software Engineering (CASE) tools, that have been created explicitly to improve their rou-
tine work through the use of automated support. Analysts rely on CASE tools to increase
productivity, communicate more effectively with users, and integrate the work that they do on the
system from the beginning to the end of the life cycle.
Visible Analyst (VA) is one example of a CASE tool that enables systems analysts to do
graphical planning, analysis, and design in order to build complex client/server applications and
databases. Visible Analyst and another software product called Microsoft Visio allow users to
draw and modify diagrams easily.
Analysts and users alike report that CASE tools afford them a means of communication
about the system during its conceptualization. Through the use of automated support featuring
onscreen output, clients can readily see how data flows and other system concepts are depicted,
and they can then request corrections or changes that would have taken too much time with
older tools.
Some analysts distinguish between upper and lower CASE tools. An upper CASE tool al-
lows the analyst to create and modify the system design. All the information about the project is
stored in an encyclopedia called the CASE repository, a large collection of records, elements, di-
agrams, screens, reports, and other information (see Figure 1.6). Analysis reports may be pro-
duced using the repository information to show where the design is incomplete or contains errors.
Upper CASE tools can also help support the modeling of an organization’s functional require-
ments, assist analysts and users in drawing the boundaries for a given project, and help them vi-
sualize how the project meshes with other parts of the organization.
Lower CASE tools are used to generate computer source code, eliminating the need for pro-
gramming the system. Code generation has several advantages: (1) the system can be produced
more quickly than by writing computer programs; (2) the amount of time spent on maintenance
decreases with code generation; (3) code can be generated in more than one computer language,
so it is easier to migrate systems from one platform to another; (4) code generation provides a
cost-effective way of tailoring systems purchased from third-party vendors to the needs of the or-
ganization; and (5) generated code is free of computer program errors.
THE AGILE APPROACH
Although this text tends to focus on SDLC, the most widely used approach in practice, at times
the analyst will recognize that the organization could benefit from an alternative approach. Per-
haps a systems project using a structured approach has recently failed, or perhaps the organiza-
tional subcultures, composed of several different user groups, seem more in step with an
alternative method. We cannot do justice to these methods in a small space; each deserves and has
inspired its own books and research. By mentioning these approaches here, however, we hope to
help you become aware that under certain circumstances, your organization may want to consider
an alternative or supplement to structured analysis and design and to the SDLC.
The agile approach is a software development approach based on values, principles, and core
practices. The four values are communication, simplicity, feedback, and courage. We recommend
that systems analysts adopt these values in all projects they undertake, not just when adopting the
agile approach.
In order to finish a project, adjustments often need to be made in project management. In
Chapter 6 we will see that agile methods can ensure successful completion of a project by adjust-
ing the important resources of time, cost, quality, and scope. When these four control variables
are properly included in the planning, there is a state of balance between the resources and the ac-
tivities needed to complete the project.
Taking development practices to the extreme is most noticeable when one pursues practices
that are unique to agile development. In Chapter 6 we discuss four core agile practices: short re-
leases, the 40-hour workweek, hosting an onsite customer, and using pair programming. At first
glance these practices appear extreme, but as you will see, we can learn some important lessons
from incorporating many of the values and practices of the agile approach into systems analysis
and design projects.
CHAPTER 1 • SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES 15
ADD CUSTOMER
NUMBER XXXXXX
NAME XXXXXXXXXXXX
STREET XXXXXXXXXXXX
CITY XXXXXXXXXXXX
STATE XX
ZIP XXXXX-XXXX
SALES ANALYSIS REPORT
ITEM
DESCRIPTION
TOTAL
SALES
XXXXXXXXXXXXXX
XXXXXXXXXXXXXX
XXXXXXXXXXXXXX
XXXXXXXXXXXXXX
XXXXXXXXXXXXXX
XXXXXXXXXXXXXX
ZZ,ZZ9
ZZ,ZZ9
ZZ,ZZ9
ZZ,ZZ9
ZZ,ZZ9
ZZ,ZZ9
Screen and
Report Design
System Diagrams
and Models
DO WHILE NOT End of file
Read Item record
IF Item is low in stock
Print Purchase Order
Update Item record
ENDIF
ENDDO
Data Dictionary and
Process Logic
Project Management
System Requirements
• Add new customers
• Identify fast- and slow-selling
items
• Enter customer orders
• Look up customer credit
balance
• Maintain adequate inventory
Deliverables
• Add customer screen
• Item Analysis Report
• Customer order entry screen
• Customer inquiry screen
• Vendor purchase order
program
• Seasonal forecasting
Number +
Description +
Cost +
Price +
Quantity on hand +
Quantity on order +
Reorder point +
Monthly sales +
Year to date sales
Item =
FIGURE 1.6
The repository concept.
Developmental Process for an Agile Project
There are activities and behaviors that shape the way development team members and customers
act during the development of an agile project. Two words that characterize a project done with
an agile approach are interactive and incremental. By examining Figure 1.7 we can see that there
are five distinct stages: exploration, planning, iterations to the first release, productionizing, and
maintenance. Notice that the three red arrows that loop back into the “Iterations” box symbolize
incremental changes created through repeated testing and feedback that eventually lead to a sta-
ble but evolving system. Also note that there are multiple looping arrows that feed back into the
productionizing phase. These symbolize that the pace of iterations is increased after a product is
released. The red arrow is shown leaving the maintenance stage and returning to the planning
stage, so that there is a continuous feedback loop involving customers and the development team
as they agree to alter the evolving system.
EXPLORATION. During exploration, you will explore your environment, asserting your conviction
that the problem can and should be approached with agile development, assemble the team, and
assess team member skills. This stage will take anywhere from a few weeks (if you already know
16 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
Planning
Exploration
Maintenance
Iterations to the
First Release
Productionizing
Agile methods involvethe customer in manyiterations prior tothe firstrelease . . .
. . . and increase
the pace of
iterations after
the product is
released.
FIGURE 1.7
The five stages of the agile
modeling development process
show that frequent iterations are
essential to successful system
development.
your team members and technology) to a few months (if everything is new). You also will be
actively examining potential technologies needed to build the new system. During this stage you
should practice estimating the time needed for a variety of tasks. In exploration, customers also
are experimenting with writing user stories. The point is to get the customer to refine a story
enough so that you can competently estimate the amount of time it will take to build the solution
into the system you are planning. This stage is all about adopting a playful and curious attitude
toward the work environment, its problems, technologies, and people.
PLANNING. The next stage of the agile development process is called planning. In contrast to the
first stage, planning may only take a few days to accomplish. In this stage you and your customers
agree on a date anywhere from two months to half a year from the current date to deliver solutions
to their most pressing business problems (you will be addressing the smallest, most valuable set
of stories). If your exploration activities were sufficient, this stage should be very short.
The entire agile planning process has been characterized using the idea of a planning game
as devised by Beck. The planning game spells out rules that can help formulate the agile devel-
opment team’s relationship with their business customers. Although the rules form an idea of how
you want each party to act during development, they are not meant as a replacement for a rela-
tionship. They are a basis for building and maintaining a relationship.
So, we use the metaphor of a game. To that end we talk in terms of the goal of the game, the
strategy to pursue, the pieces to move, and the players involved. The goal of the game is to max-
imize the value of the system produced by the agile team. In order to figure the value, you have
to deduct costs of development, and the time, expense, and uncertainty taken on so that the de-
velopment project could go forward.
The strategy pursued by the agile development team is always one of limiting uncertainty
(downplaying risk). To do that they design the simplest solution possible, put the system into pro-
duction as soon as possible, get feedback from the business customer about what’s working, and
adapt their design from there.
Story cards become the pieces in the planning game that briefly describe the task, provide
notes, and provide an area for task tracking.
There are two main players in the planning game: the development team and the business cus-
tomer. Deciding which business group in particular will be the business customer is not always
CHAPTER 1 • SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES 17
easy, because the agile process is an unusually demanding role for the customer to play. Customers
decide what the development team should tackle first. Their decisions will set priorities and check
functionalities throughout the process.
ITERATIONS TO THE FIRST RELEASE. The third stage in the agile development process is composed
of iterations to the first release. Typically these are iterations (cycles of testing, feedback, and
change) of about three weeks in duration. You will be pushing yourself to sketch out the entire
architecture of the system, even though it is just in outline or skeletal form. One goal is to run
customer-written functional tests at the end of each iteration. During the iterations stage you
should also question whether the schedule needs to be altered or whether you are tackling too
many stories. Make small rituals out of each successful iteration, involving customers as well as
developers. Always celebrate your progress, even if it is small, because this is part of the culture
of motivating everyone to work extremely hard on the project.
PRODUCTIONIZING. Several activities occur during this phase. In this phase the feedback cycle
speeds up so that rather than receiving feedback for an iteration every three weeks, software
revisions are being turned around in one week. You may institute daily briefings so everyone
knows what everyone else is doing. The product is released in this phase, but may be improved
by adding other features. Getting a system into production is an exciting event. Make time to
celebrate with your teammates and mark the occasion. One of the watchwords of the agile
approach, with which we heartily agree, is that it is supposed to be fun to develop systems!
MAINTENANCE. Once the system has been released, it needs to be kept running smoothly. New
features may be added, riskier customer suggestions may be considered, and team members may
be rotated on or off the team. The attitude you take at this point in the developmental process is
more conservative than at any other time. You are now in a “keeper of the flame” mode rather
than the playful one you experienced during exploration.
OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN
Object-oriented (O-O) analysis and design is an approach that is intended to facilitate the devel-
opment of systems that must change rapidly in response to dynamic business environments.
Chapter 10 helps you understand what object-oriented systems analysis and design is, how it dif-
fers from the structured approach of the SDLC, and when it may be appropriate to use an object-
oriented approach.
Object-oriented techniques are thought to work well in situations in which complicated in-
formation systems are undergoing continuous maintenance, adaptation, and redesign. Object-
oriented approaches use the industry standard for modeling object-oriented systems, called the
unified modeling language (UML), to break down a system into a use case model.
Object-oriented programming differs from traditional procedural programming by examin-
ing objects that are part of a system. Each object is a computer representation of some actual thing
or event. Objects may be customers, items, orders, and so on. Objects are represented by and
grouped into classes that are optimal for reuse and maintainability. A class defines the set of
shared attributes and behaviors found in each object in the class.
The phases in UML are similar to those in the SDLC. Since those two methods share rigid
and exacting modeling, they happen in a slower, more deliberate pace than the phases of agile
modeling. The analyst goes through problem and identification phases, an analysis phase, and a
design phase as shown in Figure 1.8. Although much of the specifics are discussed in Chapters 2
and 10, the following steps give a brief description of the UML process.
1. Define the use case model.
In this phase the analyst identifies the actors and the major events initiated by the actors.
Often the analyst will start by drawing a diagram with stick figures representing the actors and
arrows showing how the actors relate. This is called a use case diagram (Chapter 2) and it
represents the standard flow of events in the system. Then an analyst typically writes up a use
case scenario (Chapter 2), which describes in words the steps that are normally performed.
2. During the systems analysis phase, begin drawing UML diagrams.
In the second phase (Chapter 10), the analyst will draw Activity Diagrams, which
illustrate all the major activities in the use case. In addition, the analyst will create one or
18 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
Modify Diagrams and
Complete
Specifications
Develop and
Document the
System
Draw Use Case
Diagrams
Write Use Case
Scenarios
Derive Activity
Diagrams from Use
Cases
Develop Sequence
Diagrams
Draw Statechart
Diagrams
Create Class
Diagrams
Systems Analysis
Phase
Systems Design
Phase
Problem Identification
Phase
Begin Object-Oriented
Analysis and Design
FIGURE 1.8
The steps in the UML
development process.
more sequence diagrams for each use case, which show the sequence of activities and their
timing. This is an opportunity to go back and review the use cases, rethink them, and
modify them if necessary.
3. Continuing in the analysis phase, develop class diagrams.
The nouns in the use cases are objects that can potentially be grouped into classes. For
example, every automobile is an object that shares characteristics with other automobiles.
Together they make up a class.
4. Still in the analysis phase, draw statechart diagrams.
The class diagrams are used to draw statechart diagrams, which help in understanding
complex processes that cannot be fully derived by the sequence diagrams. The statechart
diagrams are extremely useful in modifying class diagrams, so the iterative process of
UML modeling continues.
5. Begin systems design by modifying the UML diagrams. Then complete the specifications.
Systems design means modifying the existing system and that implies modifying the
diagrams drawn in the previous phase. These diagrams can be used to derive classes, their
attributes, and methods (methods are simply operations). The analyst will need to write
class specifications for each class including the attributes, methods, and their descriptions.
They will also develop methods specifications that detail the input and output requirements
for the method, along with a detailed description of the internal processing of the method.
6. Develop and document the system.
UML is, of course, a modeling language. An analyst may create wonderful models, but
if the system isn’t developed there is not much point in building models. Documentation is
critical. The more complete the information you provide the development team through
documentation and UML diagrams, the faster the development and the more solid the final
production system.
Object-oriented methodologies often focus on small, quick iterations of development, some-
times called the spiral model. Analysis is performed on a small part of the system, usually starting
CHAPTER 1 • SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES 19
with a high-priority item or perhaps one that has the greatest risk. This is followed by design and
implementation. The cycle is repeated with analysis of the next part, design, and some implemen-
tation, and it is repeated until the project is completed. Reworking diagrams and the components
themselves is normal. UML is a powerful modeling tool that can greatly improve the quality of your
systems analysis and design and the final product.
CHOOSING WHICH SYSTEMS DEVELOPMENT METHOD TO USE
The differences among the three approaches described earlier are not as big as they seem at the out-
set. In all three approaches, the analyst needs to understand the organization first (Chapter 2). Then
the analyst or project team needs to budget their time and resources and develop a project proposal
(Chapter 3). Next they need to interview organizational members and gather detailed data by us-
ing questionnaires (Chapter 4) and sample data from existing reports and observe how business is
currently transacted (Chapter 5). The three approaches have all of these activities in common.
Even the methods themselves have similarities. The SDLC and object-oriented approaches both
require extensive planning and diagramming. The agile approach and the object-oriented approach
both allow subsystems to be built one at a time until the entire system is complete. The agile and
SDLC approaches are both concerned about the way data logically moves through the system.
So given a choice to develop a system using an SDLC approach, an agile approach, or an ob-
ject-oriented approach, which would you choose? Figure 1.9 provides a set of guidelines to help
you choose which method to use when developing your next system.
SUMMARY
Information can be viewed as an organizational resource just as humans are. As such, it must be managed
carefully, just as other resources are. The availability of affordable computer power to organizations has
meant an explosion of information, and consequently, more attention must be paid to coping with the infor-
mation generated.
Systems analysts recommend, design, and maintain many types of systems for users, including transac-
tion processing systems (TPS), office automation systems (OAS), knowledge work systems (KWS), and man-
agement information systems (MIS). They also create decision-oriented systems for specific users. These
Choose When
Agile Methodologies
The Systems Development
Life Cycle (SDLC) Approach
Object-Oriented
Methodologies
• the customer is satisfied with incremental improvements
• applications need to be developed quickly in response to
a dynamic environment
• there is a project champion of agile methods in the
organization
• a rescue takes place (the system failed and there is no time
to figure out what went wrong)
• executives and analysts agree with the principles of agile
methodologies
• the problems modeled lend themselves to classes
• an organization supports the UML learning
• systems can be added gradually, one subsystem at a time
• reuse of previously written software is a possibility
• it is acceptable to tackle the difficult problems first
• systems have been developed and documented using SDLC
• it is important to document each step of the way
• communication of how new systems work is important
• upper-level management feels more comfortable or safe
using SDLC
• there are adequate resources and time to complete the full
SDLC
FIGURE 1.9
How to decide which development
method to use.
20 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
H Y P E R C A S E ® E X P E R I E N C E 1
“Welcome to Maple Ridge Engineering, what we call MRE.
We hope you’ll enjoy serving as a systems consultant for us. Al-
though I’ve worked here five years in different capacities, I’ve just
been reassigned to serve as an administrative aide to Snowden
Evans, the head of the new Training and Management Systems De-
partment. We’re certainly a diverse group. As you make your way
through the company, be sure to use all your skills, both technical
and people oriented, to understand who we are and to identify the
problems and conflicts that you think should be solved regarding
our information systems.”
“To bring you up to date, let me say that Maple Ridge Engi-
neering is a medium-sized medical engineering company. Last
year, our revenues exceeded $287 million. We employ about
335 people. There are about 150 administrative employees as well
as management and clerical staff like myself; approximately
75 professional employees, including engineers, physicians, and
systems analysts; and about 110 trade employees, such as drafters
and technicians.”
“There are four offices. You will visit us through HyperCase in
our home office in Maple Ridge, Tennessee. We have three other
branches in the southern United States as well: Atlanta, Georgia;
Charlotte, North Carolina; and New Orleans, Louisiana. We’d love
to have you visit when you’re in the area.”
“For now, you should explore HyperCase using either Firefox,
Safari, or Microsoft Internet Explorer.”
“To learn more about Maple Ridge Engineering as a company
or to find out how to interview our employees, who will use the sys-
tems you design, and how to observe their offices in our company,
you may want to start by going to the Web site found at www.
pearsonhighered.com/kendall. Then click on the link labeled
HyperCase. At the HyperCase display screen, click on Start and
you will be in the reception room for Maple Ridge Engineering.
From this point, you can start consulting right away.”
This Web site contains useful information about the project as
well as files that can be downloaded to your computer. There is a set
of Visible Analyst data files, and another set of Visio data files that
match HyperCase. They contain a partially constructed series of
data flow diagrams, entity-relationship diagrams, UML diagrams,
and repository information. The HyperCase Web site also contains
additional exercises that may be assigned. HyperCase is designed
to be explored, and you should not overlook any object or clue on a
Web page.
include decision support systems (DSS), expert systems (ES), group decision support systems (GDSS),
computer-supported collaborative work systems (CSCWS), and executive support systems (ESS). Many appli-
cations are either originating on, or moving to, the Web to support ecommerce and many other business functions.
Systems analysis and design is a systematic approach to identifying problems, opportunities, and ob-
jectives; to analyzing human and computer-generated information flows in organizations; and to designing
computerized information systems to solve a problem. Systems analysts are required to take on many roles
in the course of their work. Some of these roles are (1) an outside consultant to business, (2) a supporting
expert within a business, and (3) an agent of change in both internal and external situations.
Analysts possess a wide range of skills. First and foremost, the analyst is a problem solver, someone
who enjoys the challenge of analyzing a problem and devising a workable solution. Systems analysts require
communication skills that allow them to relate meaningfully to many different kinds of people on a daily ba-
sis, as well as computer skills. Understanding and relating well to users is critical to their success.
Analysts proceed systematically. The framework for their systematic approach is provided in what is
called the systems development life cycle (SDLC). This life cycle can be divided into seven sequential
phases, although in reality the phases are interrelated and are often accomplished simultaneously. The seven
phases are identifying problems, opportunities, and objectives; determining human information require-
ments; analyzing system needs; designing the recommended system; developing and documenting software;
testing and maintaining the system; and implementing and evaluating the system.
The agile approach is a software development approach based on values, principles, and core practices.
Systems that are designed using agile methods can be developed rapidly. Stages in the agile development
process are exploration, planning, iterations to the first release, productionizing, and maintenance.
A third approach to systems development is called object-oriented analysis design. These techniques
are based on object-oriented programming concepts that have become codified in UML, a standardized
modeling language in which objects that are created include not only code about data but also instructions
about the operations to be performed on the data. Key diagrams help analyze, design, and communicate
UML-developed systems. These systems are usually developed as components and reworking the compo-
nents many times is a normal activity in object-oriented analysis and design.
www.pearsonhighered.com/kendall
www.pearsonhighered.com/kendall
CHAPTER 1 • SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES 21
KEYWORDS AND PHRASES
agent of change
agile approach
agile methods
Ajax
artificial intelligence (AI)
bespoke software
Computer-Assisted Software Engineering (CASE)
CASE tools
computer-supported collaborative work systems
(CSCWS)
decision support systems (DSS)
ecommerce applications
enterprise resource planning (ERP) systems
executive support systems (ESS)
expert systems
exploration phase
group decision support systems (GDSS)
human–computer interaction (HCI)
iterations to the first release phase
knowledge work systems (KWS)
maintenance phase
management information systems (MIS)
mcommerce (mobile commerce)
migrate systems
object-oriented (O-O) systems analysis and design
office automation systems (OAS)
open source software (OSS)
planning game
planning phase
productionizing phase
prototyping
rapid application development (RAD)
service-oriented architecture (SOA)
systems analysis and design
systems analyst
systems consultant
systems development life cycle (SDLC)
transaction processing systems (TPS)
unified modeling language (UML)
REVIEW QUESTIONS
1. Compare treating information as a resource to treating humans as a resource.
2. List the differences between OAS and KWS.
3. Define what is meant by MIS.
4. How does MIS differ from DSS?
5. Define the term expert systems. How do expert systems differ from decision support systems?
6. List the problems of group interaction that group decision support systems (GDSS) and computer-
supported collaborative work systems (CSCWS) were designed to address.
7. Which is the more general term, CSCWS or GDSS? Explain.
8. Define the term mcommerce.
9. List the advantages of mounting applications on the Web.
10. What is the overarching reason for designing enterprise (or ERP) systems?
11. Provide an example of an open source software project.
12. List the advantages of using systems analysis and design techniques in approaching computerized
information systems for business.
13. List three roles that the systems analyst is called upon to play. Provide a definition for each one.
14. What personal qualities are helpful to the systems analyst? List them.
15. List and briefly define the seven phases of the systems development life cycle (SDLC).
16. What are CASE tools used for?
17. What is the difference between upper and lower CASE tools?
18. Define what is meant by the agile approach.
19. What is the meaning of the phrase “the planning game”?
20. What are the stages in agile development?
21. Define the term object-oriented analysis and design.
22. What is UML?
SELECTED BIBLIOGRAPHY
Coad, P., and E. Yourdon. Object-Oriented Analysis, 2d ed. Englewood Cliffs, NJ: Prentice Hall, 1991.
Davis, G. B., and M. H. Olson. Management Information Systems: Conceptual Foundation, Structure, and
Development, 2d ed. New York: McGraw-Hill, 1985.
Feller, J., P. Finnegan, D. Kelly, and M. MacNamara. “Developing Open Source Software: A Community-
Based Analysis of Research.” In IFIP International Federation for Information Processing,
Vol. 208, Social Inclusion: Societal and Organizational Implications for Information Systems.
Edited by E. Trauth, D. Howcroft, T. Butler, B. Fitzgerald, and J. DeGross, pp. 261–278. Boston:
Springer, 2006.
22 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
Kendall, J. E., and K. E. Kendall. “Information Delivery Systems: An Exploration of Web Push and Pull
Technologies.” Communications of AIS, Vol. 1, Article 14, April 23, 1999.
Kendall, J. E., K. E. Kendall, and S. Kong. “Improving Quality Through the Use of Agile Methods in Sys-
tems Development: People and Values in the Quest for Quality.” In Measuring Information Systems
Delivery Quality. Edited by E. W. Duggan and H. Reichgelt, pp. 201–222. Hershey, PA: Idea Group
Publishing, 2006.
Laudon, K. C., and J. P. Laudon. Management Information Systems, 11th ed. Upper Saddle River, NJ:
Pearson Prentice Hall, 2010.
Verma, S. “Software Quality and the Open Source Process.” In Measuring Information Systems Delivery Qual-
ity. Edited by E. W. Duggan and H. Reichgelt, pp. 284–303. Hershey, PA: Idea Group Publishing, 2006.
www.visible.com/Products/index.htm. Last accessed March 23, 2009.
Yourdon, E. Modern Structured Analysis. Englewood Cliffs, NJ: Prentice Hall, 1989.
Zhang, P., J. Carey, D. Te’eni, and M. Tremaine. “Integrating Human–Computer Interaction Development
into the Systems Development Life Cycle: A Methodology.” Communications of the Association for
Information Systems, Vol. 15, 2005, pp. 512–543.
www.visible.com/Products/index.htm
CHAPTER 1 • SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES 23
E P I S O D E 1
CPU CASE
ALLEN SCHMIDT, JULIE E. KENDALL, AND KENNETH E. KENDALL
The Case Opens
On a warm, sunny day in late October, Chip Puller parks his car and walks into his office at Central Pacific Univer-
sity. It felt good to be starting as a systems analyst, and he was looking forward to meeting the other staff.
In the office, Anna Liszt introduces herself. “We’ve been assigned to work as a team on a new project. Why
don’t I fill you in with the details, and then we can take a tour of the facilities?”
“That sounds good to me,” Chip replies. “How long have you been working here?”
“About five years,” answers Anna. “I started as a programmer analyst, but the last few years have been ded-
icated to analysis and design. I’m hoping we’ll find some ways to increase our productivity,” Anna continues.
“Tell me about the new project,” Chip says.
“Well,” Anna replies, “like so many organizations, we have a large number of microcomputers with different
software packages installed on them. From what I understand, in the 1980s there were few personal computers and
a scattered collection of software. This expanded rapidly in the 1990s, and now everyone uses computers. Some fac-
ulty members use more than one computer. The current system that is used to maintain software and hardware, which
was originally quite useful, is now very outdated and quite overwhelmed.”
“What about the users? Who should I know? Who do you think will be important in helping us with the new
system?” Chip asks.
“You’ll meet everyone, but there are key people I’ve recently met, and I’ll tell you what I’ve learned so you’ll
remember them when you meet them.
“Dot Matricks is manager of all microcomputer systems at Central Pacific. We seem to be able to work together
well. She’s very competent. She’d really like to be able to improve communication among users and analysts.”
“It will be a pleasure to meet her,” Chip speculates.
“Then there’s Mike Crowe, computer maintenance expert. He really seems to be the nicest guy, but way too
busy. We need to help lighten his load. The software counterpart to Mike is Cher Ware. She’s a free spirit, but don’t
get me wrong, she knows her job,” Anna says.
“She could be fun to work with,” Chip muses.
“Could be,” Anna agrees. “You’ll meet the financial analyst, Paige Prynter, too. I haven’t figured her out yet.”
“Maybe I can help,” Chip says.
“Last, you should—I mean, you will—meet Hy Perteks, who does a great job running the Information Center.
He’d like to see us be able to integrate our life cycle activities.”
“It sounds promising,” Chip says. “I think I’m going to like it here.”
EXERCISES
E-1. From the introductory conversation Chip and Anna shared, which elements mentioned might suggest the use
of CASE tools?
24
C H A P T E R 2
Understanding and Modeling
Organizational Systems
LEARNING OBJECTIVES
Once you have mastered the material in this chapter you will be able to:
1. Understand that organizations and their members are systems and that analysts need to
take a systems perspective.
2. Depict systems graphically using context-level data flow diagrams, entity-relationship
models, and use cases and use case scenarios.
3. Recognize that different levels of management require different systems.
4. Comprehend that organizational culture impacts the design of information systems.
To analyze and design appropriate information systems, systems analysts
need to comprehend the organizations they work in as systems shaped
through the interactions of three main forces: the levels of management,
design of organizations, and organizational cultures.
Organizations are large systems composed of interrelated subsystems.
The subsystems are influenced by three broad levels of management decision makers (opera-
tions, middle management, and strategic management) that cut horizontally across the orga-
nizational system. Organizational cultures and subcultures all influence the way people in
subsystems interrelate. These topics and their implications for information systems develop-
ment are considered in this chapter.
ORGANIZATIONS AS SYSTEMS
Organizations and their members are usefully conceptualized as systems designed to accomplish
predetermined goals and objectives through people and other resources that they employ. Orga-
nizations are composed of smaller, interrelated systems (departments, units, divisions, etc.) serv-
ing specialized functions. Typical functions include accounting, marketing, production, data
processing, and management. Specialized functions (smaller systems) are eventually reintegrated
through various ways to form an effective organizational whole.
The significance of conceptualizing organizations as complex systems is that systems prin-
ciples allow insight into how organizations work. To ascertain information requirements properly
and to design appropriate information systems, it is of primary importance to understand the or-
ganization as a whole. All systems are composed of subsystems (which include information sys-
tems); therefore, when studying an organization, we also examine how smaller systems are
involved and how they function.
Interrelatedness and Interdependence of Systems
All systems and subsystems are interrelated and interdependent. This fact has important implica-
tions both for organizations and for those systems analysts who seek to help them better achieve
their goals. When any element of a system is changed or eliminated, the rest of the system’s ele-
ments and subsystems are also significantly affected.
For example, suppose that the managers of an organization decide not to hire administrative as-
sistants any longer and to replace their functions with networked PCs. This decision has the poten-
tial to significantly affect not only the administrative assistants and the managers but also all the
organizational members who built up communications networks with the now departed assistants.
All systems process inputs from their environments. By definition, processes change or
transform inputs into outputs. Whenever you examine a system, check to see what is being
changed or processed. If nothing is changed, you may not be identifying a process. Typical
processes in systems include verifying, updating, and printing.
Another aspect of organizations as systems is that all systems are contained by boundaries
separating them from their environments. Organizational boundaries exist on a continuum rang-
ing from extremely permeable to almost impermeable. To continue to adapt and survive, organi-
zations must be able first to import people, raw materials, and information through their
boundaries (inputs), and then to exchange their finished products, services, or information with
the outside world (outputs).
Feedback is one form of system control. As systems, all organizations use planning and con-
trol to manage their resources effectively. Figure 2.1 shows how system outputs are used as feed-
back that compares performance with goals. This comparison in turn helps managers formulate
more specific goals as inputs. An example is a U.S. manufacturing company that produces red-
white-and-blue weight-training sets as well as gun-metal gray sets. The company finds that one
year after the Olympics, very few red-white-and-blue sets are purchased. Production managers
use that information as feedback to make decisions about what quantities of each color to pro-
duce. Feedback in this instance is useful for planning and control.
The ideal system, however, is one that self-corrects or self-regulates in such a way that deci-
sions on typical occurrences are not required. An example is a supply chain system for produc-
tion planning that takes into account current and projected demand and formulates a proposed
solution as output. An Italian knitwear manufacturer that markets its clothing in the United States
has just such a system. This company produces most of its sweaters in white, uses its computer-
ized inventory information system to find out what colors are selling best, and then dyes sweaters
in hot-selling colors immediately before shipping them.
Feedback is received from within the organization and from the outside environments around
it. Anything external to an organization’s boundaries is considered to be an environment. Numerous
environments, with varying degrees of stability, constitute the milieu in which organizations exist.
Among these environments are (1) the environment of the community in which the organi-
zation is physically located, which is shaped by the size of its population and its demographic pro-
file, including factors such as education and average income; (2) the economic environment,
influenced by market factors, including competition; (3) the political environment, controlled
through state and local governments; and (4) the legal environment, issuing federal, state, re-
gional, and local laws and guidelines. Although changes in environmental status can be planned
for, they often cannot be directly controlled by the organization.
CHAPTER 2 • UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 25
Goals
System
OutputsInputs
FIGURE 2.1
System outputs serve as feedback
that compares performance with
goals.
26 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
Related and similar to the concept of external boundary permeability is the concept of inter-
nal openness or closedness of organizations. Openness and closedness also exist on a continuum,
because there is no such thing as an absolutely open or completely closed organization.
Openness refers to the free flow of information within the organization. Subsystems such as
creative or art departments often are characterized as open, with a free flow of ideas among par-
ticipants and very few restrictions on who gets what information at what time when a creative
project is in its infancy.
At the opposite end of the continuum might be a defense department unit assigned to work
on top-secret defense planning affecting national security. Each person needs to receive clear-
ance, timely information is a necessity, and access to information is only on a “need to know” ba-
sis. This sort of unit is constrained by numerous rules.
Using a systems overlay to understand organizations allows us to acknowledge the idea of
systems composed of subsystems; their interrelatedness and their interdependence; the existence
of boundaries that allow or prevent interaction between various departments and elements of
other subsystems and environments; and the existence of internal environments characterized by
degrees of openness and closedness, which might differ across departments, units, or even sys-
tems projects.
Virtual Organizations and Virtual Teams
Not all organizations or parts of organizations are visible in a physical location. Entire organ-
izations or units of organizations can now possess virtual components that permit them to
change configurations to adapt to changing project or marketplace demands. Virtual enter-
prises use networks of computers and communications technology to bring people with spe-
cific skills together electronically to work on projects that are not physically located in the
same place. Information technology enables coordination of these remote team members. Of-
ten virtual teams spring up in already-established organizations; in some instances, however,
organizations of remote workers have been able to succeed without the traditional investment
in a physical facility.
C O N S U L T I N G O P P O R T U N I T Y 2 . 1
The E in Vitamin E Stands for Ecommerce
“Our retail shops and mail-order division are quite healthy,”
says Bill Berry, one of the owners of Marathon Vitamin Shops, “but
to be competitive, we must establish an ecommerce Web site.” His
father, a co-owner, exclaims, “I agree, but where do we start?” The
elder Berry knew, of course, that it wasn’t a case of setting up a Web
site and asking customers to email their orders to the retail store. He
identified eight different parts to ecommerce and realized that they
were all part of a larger system. In other words, all the parts had to
work together to create a strong package. His list of elements essen-
tial to ecommerce included the following:
1. Attracting customers to an ecommerce Web site.
2. Informing customers about products and services offered.
3. Allowing customers to customize products online.
4. Completing transactions with customers.
5. Accepting payment from customers in a variety of forms.
6. Supporting customers after the sale via the Web site.
7. Arranging for the delivery of goods and services.
8. Personalizing the look and feel of the Web site for different
customers.
Bill Berry read the list and contemplated it for a while. “It is ob-
vious that ecommerce is more complex than I thought,” he says. You
can help the owners of Marathon Vitamin Shops in the following
ways:
1. Make a list of the elements that are interrelated or
interdependent. Then write a paragraph stating why it is
critical to monitor these elements closely.
2. Decide on the boundaries and ultimate scope of the system.
That is, write a paragraph expressing an opinion on which
elements are critical for Marathon Vitamin Shops and which
elements can be explored at a later date.
3. Suggest which elements should be handled in-house and
which should be outsourced to another company that may be
better able to handle the job. Justify your suggestions in two
paragraphs, one for the in-house jobs and one for the
outsourced tasks.
CHAPTER 2 • UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 27
There are several potential benefits to virtual organizations, such as the possibility of reduc-
ing costs of physical facilities, more rapid response to customer needs, and helping virtual em-
ployees to fulfill their familial obligations to growing children or aging parents. Just how
important it will be to meet the social needs of virtual workers is still open to research and debate.
One example of a need for tangible identification with a culture arose when students who were
enrolled in an online virtual university, with no physical campus (or sports teams), kept request-
ing items such as sweatshirts, coffee mugs, and pennants with the virtual university’s logo im-
printed on them. These items are meaningful cultural artifacts that traditional brick-and-mortar
schools have long provided.
Many systems analysis and design teams are now able to work virtually, and in fact, many of
them marked the path for other types of employees to follow in accomplishing work virtually.
Some applications permit analysts who are providing technical assistance over the Web to “see”
the software and hardware configuration of the user requesting help, in this way creating an ad
hoc virtual team composed of the analyst and user.
Taking a Systems Perspective
Taking a systems perspective allows systems analysts to start broadly clarifying and understand-
ing the various businesses with which they will come into contact. It is important that members
of subsystems realize that their work is interrelated. Notice in Figure 2.2 that the outputs from the
production subsystems serve as inputs for marketing and that the outputs of marketing serve as
new inputs for production. Neither subsystem can properly accomplish its goals without the other.
Problems occur when each manager possesses a different picture of the importance of his or
her own functional subsystem. In Figure 2.3 you can see that the marketing manager’s personal
perspective shows the business as driven by marketing, with all other functional areas interrelated
but not of central importance. By the same token, the perspective of a production manager posi-
tions production at the center of the business, with all other functional areas driven by it.
The relative importance of functional areas as revealed in the personal perspectives of man-
agers takes on added significance when managers rise to the top through the ranks, becoming
strategic managers. They can create problems if they overemphasize their prior functional infor-
mation requirements in relation to the broader needs of the organization.
For example, if a production manager is promoted but continues to stress production sched-
uling and performance of line workers, the broader aspects of forecasting and policy making may
suffer. This tendency is a danger in all sorts of businesses: where engineers work their way up to
become administrators of aerospace firms, college professors move from their departments to be-
come deans, or programmers advance to become executives of software firms. Their tunnel vi-
sion often creates problems for the systems analyst trying to separate actual information
requirements from desires for a particular kind of information.
Outputs from
marketing
become the inputs
for production.
Outputs from
production
become the inputs
for marketing.
Marketing
Production
FIGURE 2.2
Outputs from one department
serve as inputs for another such
that subsystems are interrelated.
Enterprise Systems: Viewing the Organization as a System
Enterprise systems, often referred to as enterprise resource planning (ERP) systems, is a term
used to describe an integrated organizational (enterprise) information system. Specifically, ERP
is software that helps the flow of information between the functional areas in the organization. It
is a customized system that, rather than being developed in-house, is usually purchased from one
of the software development companies well-known for its ERP packages, such as SAP or Ora-
cle. The product is then customized to fit the requirements of a particular company. Typically, the
vendor requires an organizational commitment in terms of specialized user or analyst training.
Many ERP packages are designed to run on the Web. ERP, although growing in popularity, is also
being viewed with some skepticism.
ERP evolved from materials requirements planning (MRP), the information systems de-
signed to improve manufacturing in general and assembly in particular. ERP systems now include
manufacturing components and thus help with capacity planning, material production schedul-
ing, and forecasting. Beyond manufacturing (and its service counterpart), ERP includes sales and
operations planning, distribution, procurement, and managing the supply chain. It therefore sig-
nificantly affects all the areas in the organization, including accounting, finance, management,
marketing, and information systems.
Implementing an ERP solution may be frustrating because it is difficult to analyze a system
currently in use and then fit the ERP model to that system. Furthermore, companies tend to de-
sign their business processes before ERP is implemented. Unfortunately, this process is often
rushed and the proposed business model does not always match the ERP functionality. The result
is further customizations, extended implementation time frames, higher costs, and often the loss
28 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
Di
stributionPro
duction
Marketing
Pu
rchasing
How a Marketing Manager May View the Organization
Marketing
Finance
Production
Di
stribution
How a Production Manager May See the Organization
Finance
Purchasing
FIGURE 2.3
A depiction of the personal
perspective of functional
managers shows that they feature
their own functional area as
central to the organization.
CHAPTER 2 • UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 29
of user confidence. Analysts need to be aware of the magnitude of the problem they are tackling
when trying to implement ERP packages.
DEPICTING SYSTEMS GRAPHICALLY
A system or subsystem as it exists within the corporate organization may be graphically depicted
in several ways. The various graphical models show the boundaries of the system and the infor-
mation used in the system.
Systems and the Context-Level Data Flow Diagram
The first model is the context-level data flow diagram (also called an environmental model). Data
flow diagrams focus on the data flowing into and out of the system and the processing of the data.
These basic components of every computer program can be described in detail and used to ana-
lyze the system for accuracy and completeness.
As shown in Figure 2.4, the context-level data flow diagram employs only three symbols: (1)
a rectangle with rounded corners, (2) a square with two shaded edges, and (3) an arrow. Processes
transform incoming data into outgoing information, and the content level has only one process,
representing the entire system. The external entity represents any entity that supplies or receives
information from the system but is not a part of the system. This entity may be a person, a group
of people, a corporate position or department, or other systems. The lines that connect the exter-
nal entities to the process are called data flows, and they represent data.
An example of a context-level data flow diagram is found in Figure 2.5. In this example, the
most basic elements of an airline reservation system are represented. The passenger (an entity) ini-
tiates a travel request (data flow). The context-level diagram doesn’t show enough detail to indicate
exactly what happens (it isn’t supposed to), but we can see that the passenger’s preferences and the
available flights are sent to the travel agent, who sends ticketing information back to the process. We
can also see that the passenger reservation is sent to the airline. The context-level data flow diagram
serves as a good starting point for drawing the use case diagram (discussed later in this chapter).
In Chapter 7 we see that a data flow contains much information. For example, the passenger
reservation contains the passenger’s name, airline, flight number(s), date(s) of travel, price, seat-
ing preference, and so on. For now, however, we are concerned mainly with how a context level
defines the boundaries of the system. In the preceding example, only reservations are part of the
process. Other decisions that the airline would make (for example, purchasing airplanes, chang-
ing schedules, pricing) are not part of this system.
The context-level data flow diagram is one way to show the scope of the system, or what is
to be included in the system. The external entities are outside of the scope and something over
which the system has no control.
A process means that some action
or group of actions take place.
An entity is a person, group,
department, or any system that
either receives or originates
information or data.
A data flow shows that information
is being passed from or to a
process.
FIGURE 2.4
The basic symbols of a data flow
diagram.
30 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
Systems and the Entity-Relationship Model
Another way a systems analyst can show the scope of the system and define proper system bound-
aries is to use an entity-relationship model. The elements that make up an organizational system
can be referred to as entities. An entity may be a person, a place, or a thing, such as a passenger
on an airline, a destination, or a plane. Alternatively, an entity may be an event, such as the end
of the month, a sales period, or a machine breakdown. A relationship is the association that de-
scribes the interaction among the entities.
There are many different conventions for drawing entity-relationship (E-R) diagrams (with
names like crow’s foot, Arrow, or Bachman notation). In this book, we use crow’s foot notation.
For now, we assume that an entity is a plain rectangular box.
Figure 2.6 shows a simple entity-relationship diagram. Two entities are linked together by a
line. In this example, the end of the line is marked with two short parallel marks (| |), signifying
that this relationship is one-to-one. Thus, exactly one employee is assigned to one phone exten-
sion. No one shares the same phone extension in this office.
The red arrows are not part of the entity-relationship diagram. They are present to demon-
strate how to read the entity-relationship diagram. The phrase on the right side of the line is read
from top to bottom as follows: “One EMPLOYEE is assigned to one PHONE EXTENSION.” On
0
Airline
Travel Request Ticketing Information
Travel
Agent
Preferences and
Available Flights
Airline
Reservation
System
Passenger
Reservation
Passenger
FIGURE 2.5
A context-level data flow diagram
for an airline reservation system.
Employee
Phone Extension
One
EMPLOYEE
is assigned
to one
PHONE
EXTENSION.
One
PHONE
EXTENSION
is
listed
for one
EMPLOYEE.
is
listed
for
is
assigned
to
FIGURE 2.6
An entity-relationship diagram
showing a one-to-one relationship.
CHAPTER 2 • UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 31
the left side, as you read from bottom to top, the arrow says, “One PHONE EXTENSION is listed
for one EMPLOYEE.”
Similarly, Figure 2.7 shows another relationship. The crow’s foot notation (>—+) is obvious on
this diagram, and this particular example is a many-to-one example. As you read from left to right,
the arrow signifies, “Many EMPLOYEES are members of a DEPARTMENT.” As you read from
right to left, it implies, “One DEPARTMENT contains many EMPLOYEES.”
Notice that when a many-to-one relationship is present, the grammar changes from “is” to
“are” even though the singular “is” is written on the line. The crow’s foot and the single mark do
not literally mean that this end of the relationship must be a mandatory “many.” Instead, they im-
ply that this end could be anything from one to many.
Figure 2.8 elaborates on this scheme. Here we have listed a number of typical entity relationships.
The first, “An EMPLOYEE is assigned to an OFFICE,” is a one-to-one relationship. The second one
is a one-to-many relationship: “One CARGO AIRCRAFT will serve one or more DISTRIBUTION
CENTERs.” The third one is slightly different because it has a circle at one end. It can be read as “A
SYSTEMS ANALYST may be assigned to MANY PROJECTS,” meaning that the analyst can be as-
signed to no projects [that is what the circle (O), for zero, is for], one, or many projects. Likewise, the
circle (O) indicates that none is possible in the next relationship. Recall that the short mark means one.
Therefore, we can read it as follows: “A MACHINE may or may not be undergoing SCHEDULED
MAINTENANCE.” Notice that the line is written as “is undergoing,” but the end marks on the line
indicate that either no maintenance (O) or maintenance (I) is actually going on.
The next relationship states, “One or many SALESPEOPLE (plural of SALESPERSON) are
assigned to one or more CUSTOMERs.” It is the classic many-to-many relationship. The next re-
lationship can be read as follows: “The HOME OFFICE can have one or many EMPLOYEEs,”
or “One or more EMPLOYEEs may or may not be assigned to the HOME OFFICE.” Once again,
the Iand O together imply a Boolean situation; in other words, one or zero.
The final relationship shown here can be read as, “Many PASSENGERs are flying to many
DESTINATIONs.” This symbol [>—+] is preferred by some to indicate a mandatory “many” con-
dition. (Would it ever be possible to have only one passenger or only one destination?) Even so,
some CASE tools such as Visible Analyst do not offer this possibility, because the optional one-
or-many condition as shown in the SALESPERSON-CUSTOMER relationship will do.
Up to now we have modeled all our relationships using just one simple rectangle and a line.
This method works well when we are examining the relationships of real things such as real peo-
ple, places, and things. Sometimes, though, we create new items in the process of developing an
information system. Some examples are invoices, receipts, files, and databases. When we want
Department
is a member of
contains
Employee
Many EMPLOYEES
are members of a
DEPARTMENT.
One DEPARTMENT
contains many
EMPLOYEES.
FIGURE 2.7
An entity-relationship diagram
showing a many-to-one
relationship.
32 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
to describe how a person relates to a receipt, for example, it becomes convenient to indicate the
receipt in a different way, as shown in Figure 2.9 as an associative entity.
An associative entity can only exist if it is connected to at least two other entities. For that
reason, some call it a gerund, a junction, an intersection, or a concatenated entity. This wording
makes sense because a receipt wouldn’t be necessary unless there were a customer and a sales-
person making the transaction.
Another type of entity is the attributive. When an analyst wants to show data that are com-
pletely dependent on the existence of a fundamental entity, an attributive entity should be used.
craft
Passenger Destination
is assigned to
is occupied by
is assigned to
will be developed by
is undergoing
is being done to
is assigned to
is called on by
has
is assigned to
is flying to
will be visited by
will serve
is served by
Employee Office
Systems Analyst
Distribution Center
Salesperson Customer
Home Office Employee
Machine
Project
Cargo Aircraft
Scheduled
Maintenance
FIGURE 2.8
Examples of different types of
relationships in E-R diagrams.
Fundamental
Entity
Associative
Entity
Usually a real entity: a person,
place, or thing
Something created that joins
two entities
Something useful in describing
attributes, especially repeating
groups
Attributive
Entity
FIGURE 2.9
Three different types of entities
used in E-R diagrams.
CHAPTER 2 • UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 33
For example, when a library had multiple copies of the same book, an attributive entity could be
used to designate which copy of the book is being checked out. The attributive entity is useful for
showing repeating groups of data. For example, suppose we are going to model the relationships
that exist when a patron gets tickets to a concert or show. The entities seem obvious at first: “a
PATRON and a CONCERT/SHOW,” as shown in Figure 2.10. What sort of relationship exists?
At first glance the PATRON gets a reservation for a CONCERT/SHOW, and the
CONCERT/SHOW can be said to have made a booking for a PATRON.
The process isn’t that simple, of course, and the E-R diagram need not be that simple either. The
PATRON actually makes a RESERVATION, as shown in Figure 2.11. The RESERVATION is for a
CONCERT/SHOW. The CONCERT/SHOW holds the RESERVATION, and the RESERVATION is
in the name of the PATRON. We added an associative entity here because a RESERVATION was cre-
ated due to the information system required to relate the PATRON and the CONCERT/SHOW.
Patron
Concert/Show
makes a
reservation
for
makes
a
booking
for
Here is
my firs
t
attempt.
K
en
FIGURE 2.10
The first attempt at drawing an
E-R diagram.
Concert/Show
makes
Patron
is in
the
name
of
is for
a
I’ve added
an associative
entity.
J
ulie
has
Reservation
FIGURE 2.11
Improving the E-R diagram by
adding an associative entry called
RESERVATION.
34 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
Again this process is quite simple, but because concerts and shows have many performances,
the E-R diagram is drawn once more in Figure 2.12. Here we add an attributive entity to handle
the many performances of the CONCERT/SHOW. In this case the RESERVATION is made for a
particular PERFORMANCE, and the PERFORMANCE is one of many that belong to a specific
CONCERT/SHOW. In turn the CONCERT/SHOW has many performances, and one PERFOR-
MANCE has a RESERVATION that is in the name of a particular PATRON.
To the right of this E-R diagram is a set of data attributes that make up each of the entities.
Some entities may have attributes in common. The attributes that are underlined can be searched
for. The attributes are referred to as keys and are discussed in Chapter 13.
E-R diagrams are often used by systems designers to help model the file or database. It is
even more important, however, that the systems analyst understand early both the entities and
relationships in the organizational system. In sketching out some basic E-R diagrams, the ana-
lyst needs to:
1. List the entities in the organization to gain a better understanding of the organization.
2. Choose key entities to narrow the scope of the problem to a manageable and meaningful
dimension.
Concert/Show
has
has belongs to
Performance
makes
Patron
Reservation
is in
the
name
of
is
made
for
Patron-name
Patron-address
Patron-phone
Patron-credit-card
Reservation-number
Patron-name
Performance-number
Concert/show
Date
Time
Location
Price
Performance-number
Concert/show
Date
Time
Location
Price-options
Concert/show
Concert-details
Dates-of-event
Location
FIGURE 2.12
A more complete E-R diagram
showing data attributes of the
entities.
CHAPTER 2 • UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 35
3. Identify what the primary entity should be.
4. Confirm the results of steps 1 through 3 through other data-gathering methods
(investigation, interviewing, administering questionnaires, observation, and prototyping),
as discussed in Chapters 4 through 6.
It is critical that the systems analyst begin to draw E-R diagrams upon entering the organi-
zation rather than waiting until the database needs to be designed, because E-R diagrams help the
analyst understand what business the organization is actually in, determine the size and scope of
the problem, and discern whether the right problem is being addressed. The E-R diagrams need
to be confirmed or revised as the data-gathering process takes place.
USE CASE MODELING
Originally introduced as a diagram for use in object-oriented UML, use cases are now being
used regardless of the approach to systems development. It can be used as part of the SDLC or
in agile modeling. The word use is pronounced as a noun (yoos) rather than a verb (yooz). A
M A C A P P E A L
Microsoft Visio makes it easy for a systems analyst to draw E-R diagrams as well as most of the di-
agrams found in this book, but it is available only for PCs. Mac users have an alternative, OmniGraf-
fle Professional. OmniGraffle is easier to use than Microsoft Visio because its drag-and-drop interface
is smoother and more intuitive.
It also features a “smart guide” that uses pop-up distance markers to help position the symbols
in the correct places. Many symbols like those used in E-R diagrams are built in, but OmniGraffle
also lets the user search a third-party library called Graffletopia to find UML and other specialized
symbols.
FIGURE 2.MAC
OmniGraffle from The Omni Group is an easy and powerful drawing package.
36 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
use case model describes what a system does without describing how the system does it; that
is, it is a logical model of the system. (Logical or conceptual models will be further discussed
in Chapter 7.) The use case model reflects the view of the system from the perspective of a user
outside of the system (i.e., the system requirements).
An analyst develops use cases in a cooperative effort with the business experts who help de-
fine the requirements of the system. The use case model provides an effective means of commu-
nication between the business team and the development team. A use case model partitions the
way the system works into behaviors, services, and responses (the use cases) that are significant
to the users of the system.
From the perspective of an actor (or user), a use case should produce something that is of
value. Therefore, the analyst must determine what is important to the user, and remember to in-
clude it in the use case diagram. For example, is entering a password something of value to the
user? It may be included if the user has a concern about security or if it is critical to the success
of the project.
Use Case Symbols
A use case diagram contains the actor and use case symbols, along with connecting lines. Actors
are similar to external entities; they exist outside of the system. The term actor refers to a partic-
ular role of a user of the system. For example, an actor may be an employee, but also may be a
customer at the company store. Even though it is the same person in the real world, it is repre-
sented as two different symbols on a use case diagram, because the person interacts with the sys-
tem in different roles. The actor exists outside of the system and interacts with the system in a
specific way. An actor can be a human, another system, or a device such as a keyboard or Web
connection. Actors can initiate an instance of a use case. An actor may interact with one or more
use cases, and a use case may involve one or more actors.
Actors may be divided into two groups. Primary actors supply data or receive information
from the system. Some users directly interact with the system (system actors), but primary actors
may also be businesspeople who do not directly interact with the system but have a stake in it. Pri-
mary actors are important because they are the people who use the system and can provide details
on what the use case should do. They can also provide a list of goals and priorities. Supporting ac-
tors (also called secondary actors) help to keep the system running or provide other services. These
are the people who run the help desk, the analysts, programmers, and so on.
Sometimes it is useful to create an actor profile that lists the actors, their background, and
their skills in a simple table format. This may be useful to understand how the actor interacts with
the system. An example is an Order Processing Specialist. The profile would be, “A routine user
of the software, familiar with minor features, order exceptions, and order customization.” It is
also useful to list the actors and their goals and priorities. Each goal may become a use case.
A use case provides developers with a view of what the users want. It is free of technical or
implementation details. We can think of a use case as a sequence of transactions in a system. The
use case model is based on the interactions and relationships of individual use cases.
A use case always describes three things: an actor that initiates an event; the event that trig-
gers a use case; and the use case that performs the actions triggered by the event. In a use case,
an actor using the system initiates an event that begins a related series of interactions in the sys-
tem. Use cases are used to document a single transaction or event. An event is an input to the sys-
tem that happens at a specific time and place and causes the system to do something.
It is better to create fewer use cases rather than more. Often queries and reports are not in-
cluded; 20 use cases (and no more than 40 or 50) are sufficient for a large system. Use cases may
also be nested, if needed. Some use cases use the verb manage to group use cases for adding,
deleting, and changing into another, lower-level, use case diagram. You can include a use case on
several diagrams, but the actual use case is defined only once in the repository. A use case is
named with a verb and a noun.
Use Case Relationships
Active relationships are referred to as behavioral relationships and are used primarily in use case
diagrams. There are four basic types of behavioral relationships: communicates, includes, ex-
tends, and generalizes. Notice that all these terms are action verbs. Figure 2.13 shows the arrows
CHAPTER 2 • UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 37
and lines used to diagram each of the four types of behavioral relationships. The four relation-
ships are described next.
COMMUNICATES. The behavioral relationship communicates is used to connect an actor to a use
case. Remember that the task of the use case is to give some sort of result that is beneficial to the
actor in the system. Therefore, it is important to document these relationships between actors and
use cases. In our first example, a Student communicates with Enroll in Course. Examples of some
components of a student enrollment example are shown in the use case diagrams in Figure 2.14.
INCLUDES. The includes relationship (also called uses relationship) describes the situation in
which a use case contains behavior that is common to more than one use case. In other words, the
common use case is included in the other use cases. A dotted arrow that points to the common use
case indicates the includes relationship. An example would be a use case Pay Student Fees that
is included in Enroll in Course and Arrange Housing, because in both cases students must pay
their fees. This may be used by several use cases. The arrow points toward the common use case.
EXTENDS. The extends relationship describes the situation in which one use case possesses the
behavior that allows the new use case to handle a variation or exception from the basic use case.
Relationship
Communicates
Includes
Symbol
An actor is connected to a use case using a line with
no arrowheads.
A use case contains a behavior that is common to more than one
other use case. The arrow points to the common use case.
Generalizes
One UML “thing” is more general than another “thing.”
The arrow points to the general “thing.”
Extends
A different use case handles exceptions from the basic use case.
The arrow points from the extended to the basic use case.
Meaning
<< include >>
<< extend >>
FIGURE 2.13
Some components of use case
diagrams showing actors, use
cases, and relationships for a
student enrollment example.
<< include >>
<< include >>
Enroll
in Course
Includes
Relationship
Arrange
Housing
Pay Student
Fees
<< extend >> Pay Student
Fees
Extends
Relationship
student states
amount of coverage
Student Health
Insurance
Communicates
Relationship
Enroll
in Course
Student
Part-time
Student
Student
Generalizes
Relationship
FIGURE 2.14
Examples of use cases and
behavioral relationships for
student enrollment.
38 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
For example, the extended use case Student Health Insurance extends the basic use case Pay
Student Fees. The arrow goes from the extended to the basic use case.
GENERALIZES. The generalizes relationship implies that one thing is more typical than the other
thing. This relationship may exist between two actors or two use cases. For example, a Part-Time
Student generalizes a Student. Similarly, some of the university employees are professors. The
arrow points to the general thing.
Developing System Scope
The scope of a system defines its boundaries, what is in scope—or inside the system—and what
is out of scope. The project usually has a budget that helps to define scope, and a start and end
time. Actors are always outside the scope of the system. The communicates lines that connect ac-
tors to the use cases are the boundaries, and define the scope. Since a use case diagram is created
early in the systems life cycle, the budget, starting time, and ending time may change as the proj-
ect progresses; as the analyst learns more about the system, the use case diagrams, use case, and
scope may change.
Developing Use Case Diagrams
The primary use case consists of a standard flow of events in the system that describes a standard
system behavior. The primary use case represents the normal, expected, and successful comple-
tion of the use case.
When diagramming a use case, start by asking the users to list everything the system should
do for them. This can be done using interviews, in a joint application design session (as described
in Chapter 4), or through other facilitated team sessions. The analyst may also use agile stories
sessions (described in Chapter 6) to develop use cases. Write down who is involved with each use
case, and the responsibilities or services the use case must provide to actors or other systems. In
the initial phases, this may be a partial list that is expanded in the later analysis phases. Use the
following guidelines:
1. Review the business specifications and identify the actors involved.
2. Identify the high-level events and develop the primary use cases that describe those events
and how the actors initiate them. Carefully examine the roles played by the actors to
identify all the possible primary use cases initiated by each actor. Use cases with little or
no user interaction do not have to be shown.
3. Review each primary use case to determine the possible variations of flow through the use
case. From this analysis, establish the alternative paths. Because the flow of events is
usually different in each case, look for activities that could succeed or fail. Also look for
any branches in the use case logic in which different outcomes are possible.
If a context-level data flow diagram has been created, it can be a starting point for creating a
use case. The external entities are potential actors. Then examine the data flow to determine if it
would initiate a use case or be produced by a use case.
Figure 2.15 is an example of a use case diagram representing a system used to plan a confer-
ence. The actors are the Conference Chair, responsible for planning and managing the confer-
ence, the conference Participant, Speakers, a Keynote Speaker, Hotel Reservations, and a
Caterer. Actors represent the role the user plays, and the Caterer may be either a hotel employee
or an external catering service.
Both the Conference Chair and the Caterer are involved in planning meals and banquets.
The Conference Chair is also responsible for arranging speakers. The Participant registers for
the conference. Notice that the Reserve Room use case is involved in an includes relationship
with the Arrange Speaker and Register for Conference use cases, since both speakers and par-
ticipants will need lodging. The Arrange Language Translation use case extends the Register
for Conference use case because not all participants will require language translation services.
The Speaker actor is a generalization of Keynote Speaker.
Developing Use Case Scenarios
Each use case has a description. We will refer to the description as a use case scenario. As men-
tioned, the primary use case represents the standard flow of events in the system, and alternative
CHAPTER 2 • UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 39
paths describe variations to the behavior. Use case scenarios may describe what happens if an item
purchased is out of stock, or if a credit card company rejects a customer’s requested purchase.
There is no standardized use case scenario format, so each organization is faced with speci-
fying what standards should be included. Often the use cases are documented using a use case
document template predetermined by the organization, which makes the use cases easier to read
and provides standardized information for each use case in the model.
Use Case Levels
You may want to create use cases for different levels. One method (defined by Alistair Cockburn)
uses the following altitude metaphors:
1. White is the highest level, like clouds. This is the enterprise level, and there may only be
four to five for the entire organization. Examples might be to advertise goods, sell goods to
customers, manage inventory, manage the supply chain, and optimize shipping.
2. Kite is lower than white but still a high level, providing an overview. The kite use case may
be at the business unit or department level and is a summary of goals. Examples would be
to register students, or if working with a travel company: make an airline, hotel, car, or
cruise reservation.
3. Blue is at sea level, and is usually created for user goals. This often has the greatest interest
for users and is easiest for a business to understand. It is usually written for a business
activity and each person should be able to do one blue level activity in anywhere from 2 to
Caterer
Conference
Chair
Hotel
Reservations
Arrange
Speaker
Plan
Catering
<
<
in
cl
ud
e
>
>
Reserve
Room
<
<
in
cl
ud
e
>
>
<< extend >>
Participant
Register for
Conference
Keynote
Speaker
Speaker
Arrange Language
Translation
FIGURE 2.15
A use case diagram representing a
system used to plan a conference.
40 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
20 minutes. Examples are register a continuing student, add a new customer, place an item
in a shopping cart, and order checkout.
4. Indigo or fish is a use case that shows lots of detail, often at a functional or subfunctional
level. Examples are choose a class, pay academic fees, look up the airport code for a given
city, and produce a list of customers after entering a name.
5. Black or clam, like the bottom of the ocean, are the most detailed use cases, at a
subfunction level. Examples might be a secure logon validation, adding a new field using
dynamic HTML, or using Ajax to update a Web page in a small way.
A use case scenario example is shown in Figure 2.16. Some of the areas included are op-
tional, and may not be used by all organizations. The three main areas are:
1. An area header containing case identifiers and initiators.
2. Steps performed.
3. A footer area containing preconditions, assumptions, questions, and other information.
Use case name: Register for Conference
UniqueID: Conf RG 003
Area:
Actor(s):
Description:
Triggering Event:
Preconditions:
Postconditions:
Assumptions:
Steps Performed (Main Path)
Conference Planning
Participant has already registered and has created a user account.
Participant has a browser and a valid userID and password.
Participant has successfully registered for the conference.
Success Guarantee: Participant has registered for the conference and is enrolled in all selected sessions.
Minimum Guarantee: Participant was able to logon.
Requirements Met: Allow conference participants to be able to register for the conference using a secure Web site.
Outstanding Issues: How should a rejected credit card be handled?Priority: High
Risk:
Medium
Participant uses Conference Registration Web site, enters userID and password, and clicks the logon button.
1. Participant logs in using the secure Web server.
2. Participant record is read and password is verified.
3. Participant and session information is displayed on the Registration Web page.
4. Participant enters information on the Registration Web form and clicks Submit button.
5. Registration information is validated on the Web server.6. Registration Confirmation page is displayed to confirm registration information.
7. Credit card is charged for registration fees.
8. Add Registration Journal record is written.
userID, Password
Participant Record, userID, Password
Participant Record, Session Record
Registration Web Form
Registration Web Form
Confirmation Web Page
Secure Credit Card Web Page
Confirmation Web Page9. Registration record is updated on the Registration Master. Confirmation Web Page, Registration Record
10. Session record is updated for each selected session on the Session Master. Confirmation Web Page, Session Record11. Participant record is updated for the participant on the Participant Master. Confirmation Web Page, Participant Record12. Successful Registration Confirmation Web page is sent to the participant. Registration Record Confirmation Number
Trigger type:
Participant
Stakeholder: Conference Sponsor, Conference SpeakersLevel: Blue
Allow conference participant to register online for the conference using a secure Web site.
Information for Steps
External Temporal
FIGURE 2.16
A use case scenario is divided into
three sections: identification and
initiation; steps performed; and
conditions, assumptions, and
questions.
CHAPTER 2 • UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 41
The first area, use case identifiers and initiators, orients the reader and contains the use case
name and a unique ID; the application area or system that this use case belongs to; the actors in-
volved in the use case; and the stakeholders that have a high level of interest in the use case. Some
stakeholders never interact directly with the system, such as the stockholders, the board of direc-
tors, or the sales manager. Each primary actor is a stakeholder, but not listed in the stakeholder area.
Include the level (blue, kite, and so on) and a brief description of what the use case accomplishes.
The header concludes with the initiating (triggering) event, that is, what caused the use case
to start, and the type of trigger, either external or temporal. External events are those started by
an actor, either a person or another system requesting information, such as an airline reservation
system requesting flight information from an airline system. Temporal events are those that are
triggered or started by time. Events occur at a specific time, such as sending an email about spe-
cial offers once a week on a Sunday evening, sending bills on a specific day, or generating gov-
ernment statistics on a specified date every quarter.
The second area of the use case includes the steps performed, and the information required
for each of the steps. These statements represent the standard flow of events and the steps taken
for the successful completion of the use case. It is desirable to write up a use case for the main
path, and then to write up one for each of the alternative paths separately, rather than using
IF . . . THEN . . . statements. Steps are numbered with an integer. The steps may come from a de-
tailed interview with users or may be derived from agile modeling stories (as described in
Chapter 6). These steps should be reviewed with the users for clarification.
The analyst should examine each of the steps and determine the information required for each
step. If the analyst cannot determine the information, he or she should schedule a follow-up in-
terview with the user. Some use case descriptions include extensions or alternative scenarios, with
the exceptions as additional sections following the standard flow of events. These are numbered
with an integer, decimal point, and another integer, such as 3.1, 3.2, 3.3, and so on. These are steps
that may or may not be used. Analysts and users can brainstorm what can go wrong with the main
path, and may uncover important details and conditions. It is necessary to work with the users to
determine what to do when these conditions occur. This helps to detect errors earlier in the life
cycle.
Figure 2.17 illustrates how logic and alternative scenarios can be included in the middle sec-
tion of a use case. In this airline example, notice that step 1 is made up of smaller steps, many of
which are preceded by an “if.” These are still on the main path, but only occur if the condition is
met. For example, if there are many airports that serve a city, then all the airports will be displayed.
Extensions or alternate scenarios can also appear here. For this airline, other scenarios include flight
selection, seat selection, and meal selection. Use cases may even include iterative or looping steps.
The third area of the use case includes:
� Preconditions, or the condition of the system before the use case may be performed, which
may be another use case. An example might be, “The viewer has successfully logged into
the system,” or it might be the successful completion of another use case.
� Postconditions, or the state of the system after the use case has finished, including output
people have received, transmissions to other systems, and data that have been created or
updated. These relate to the goals or user requirements from a problem definition
(described in Chapter 3) or to agile stories (described in Chapter 6).
� Assumptions made that would affect the method of the use case and that could stipulate
required technology, such as the minimum technology requirements in a browser or even a
specific or higher version of a browser. An assumption might be that cookies or JavaScript
are enabled. The analyst must determine what to do if the assumptions are not met. When
using Google Maps, JavaScript must be enabled. If it is not enabled, the map will not
display. Cookies are required by Netflix. Good Web pages will detect that an assumption
has not been met and notify the viewer with a message, including information on how to
turn on cookies or JavaScript for different browsers.
� Minimal guarantee is the minimum promised to the users. They may not be happy with this
result and it may be that nothing happens.
� Success guarantee is what would satisfy the users, and it is usually that the goal of the use
case has been met.
� Any outstanding issues or questions must be answered before implementation of the use case.
42 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
� An optional statement of priority of the use case, which may come from a problem
definition or user requirements.
� An optional statement of risk involved in creating the use case.
The “requirements met” area links the use case to user requirements or objectives from a
problem definition. Once you develop the use case scenarios, be sure to review your results with
the business experts to verify and refine the use cases if needed.
In this particular use case scenario, called Register for Conference, the only actor involved
is the Participant. The overall area is Conference Planning, and the use case is triggered by the
participant logging on to the Registration Web page. The Steps Performed area lists the se-
quence of events that must occur for a successful conference registration. Notice that the infor-
mation needed to perform each of the steps is listed on the right. This may include Web pages and
forms, as well as database tables and records.
Steps Performed (Main Path)
Information for Steps 1. Enter departing and arriving airports, dates of travel.
Airport Locations 1.1. If an airport code is entered, display matching name, city, country
1.2. If a city is entered, find all matching cities
1.3. Customer selects a city
1.4. If there is more than one airport for the city, display airports
1.5. Client selects an airport
1.6. Insert the airport code (3 characters)
1.7. Display the matching airport country, city, and airport name
2. Find all matching flights with available seats
Flight Information3. Customer selects flight
4. Customer logs on
Customer Logon 5. Customer selects passenger names
Passenger Records6. Seating chart is displayed showing all available seats
Plane Number, Seating Chart, Available Seats
7. Customer selects seat(s) for each passenger
8. Display confirmation and credit card page
9. Credit card verified
10. Email confirmation sent
11. Airline reservation made
Extensions or Alternative Scenarios
Flight Selection
1. A list of flights displays
2. Customer selects a flight
3. Request is sent to airline
4. Flight is already full
Seat Selection
1. A list of flights displays
2. Customer selects a flight
3. Request is sent to airline
4. Seat reservations are retrieved
5. Seating chart is displayed
6. Customer cannot find an acceptable seat
Meal Selection for International Flights
1. Customer selects meal from drop-down list
Available Airline Meal List 2. Record is updated with meal selection
Customer Meal Record
FIGURE 2.17
Use cases can include conditional
steps as well as extensions or
alternative scenarios.
CHAPTER 2 • UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 43
The Preconditions area in the footer section of the use case scenario lists what must occur be-
fore the participant can register for a conference. In this example, the participant must have already
signed up as a member of the society and have a valid userID and password. The Postconditions area
lists what has been accomplished by the use case. The Assumptions area lists any basic premises the
analyst assumes are fulfilled by the actor beforehand. The Requirements Met area shows why this
use case is important and necessary for the business area to be successful. Priority is an indication of
which use cases should be developed first and which may be delayed. Risk is a rough assessment of
whether there may be problems or difficulties developing the use case. In this case, the risk is medium
because the registration use case requires a secure server and is accepting credit card information.
Creating Use Case Descriptions
Use the following four steps to create use case descriptions:
1. Use agile stories, problem definition objectives, user requirements, or a features list as a
starting point.
2. Ask about the tasks that must be done to accomplish the transaction. Ask if the use case
reads any data or updates any tables.
3. Find out if there are any iterative or looping actions.
4. The use case ends when the customer goal is complete.
Why Use Case Diagrams Are Helpful
No matter what method you use to develop your system (traditional SDLC methods, agile meth-
ods, or object-oriented methods), you will find that use cases are very valuable. The use case di-
agrams identify all the actors in the problem domain, and a systems analyst can concentrate on
what humans want and need to use the system, extend their capabilities, and enjoy their interac-
tion with technology.
The actions that need to be completed are also clearly shown on the use case diagram. This
not only makes it easy for the analyst to identify processes, but it also aids in communication with
other analysts on the team and business executives.
The use case scenario is also worthwhile. Since a lot of the information the users impart to
the analyst already takes the form of stories, it is easy to capture the stories on a use case scenario
form. The use case scenario always documents the triggering event so that an analyst can always
trace the steps that led to other use cases. Since the steps performed are noted, it is possible to em-
ploy use case scenarios to write logical processes.
Use case diagrams are becoming popular because of their simplicity and lack of technical de-
tail. They are used to show the scope of a system, along with the major features of the system and
the actors who work with those major features. The users see the system and they can react to it
and provide feedback. They may also help to determine whether to build or buy the software.
The main reasons for writing use cases are shown in Figure 2.18.
LEVELS OF MANAGEMENT
Management in organizations exists on three broad, horizontal levels: operational control, man-
agerial planning and control (middle management), and strategic management, as shown in
• Use cases effectively communicate systems requirements because the diagrams are
kept simple.
• Use cases allow people to tell stories.
• Use case stories make sense to nontechnical people.
• Use cases do not depend on a special language.
• Use cases can describe most functional requirements (such as interactions between
actors and applications).
• Use cases can describe nonfunctional requirements (such as performance and
maintainability) through the use of stereotypes.
• Use cases help analysts define boundaries.
• Use cases can be traceable, allowing analysts to identify links between use cases and
other design and documentation tools.
FIGURE 2.18
The main reasons for writing use
cases are their effectiveness in
communicating with users and
their capturing of user stories.
44 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
Figure 2.19. Each level carries its own responsibilities, and all work toward achieving organiza-
tional goals and objectives in their own ways.
Operational control forms the bottom tier of three-tiered management. Operations managers
make decisions using predetermined rules that have predictable outcomes when implemented
correctly.
They make decisions that affect implementation in work scheduling, inventory control, ship-
ping, receiving, and control of processes such as production. Operations managers oversee the
operating details of the organization.
Middle management forms the second, or intermediate, tier of the three-tiered management
system. Middle managers make short-term planning and control decisions about how resources
may best be allocated to meet organizational objectives.
Their decisions range all the way from forecasting future resource requirements to solving
employee problems that threaten productivity. The decision-making domain of middle managers
can usefully be characterized as partly operational and partly strategic, with constant fluctuations.
Operational Control
Managerial
Planning and Control
Strategic
Management
FIGURE 2.19
Management in organizations
exists on three horizontal levels:
operational control, managerial
planning and control, and strategic
management.
C O N S U L T I N G O P P O R T U N I T Y 2 . 2
Where There’s Carbon, There’s a Copy
“I don’t know what we do with the pink ones yet,” Richard Rus-
sell admitted. “They’re part of a quadruplicate form that rips apart.
All I know is that we keep them for the filing clerk, and he files
them when he has time.”
Richard is a newly hired junior account executive for Carbon,
Carbon & Rippy, a brokerage house. You are walking through the
steps he takes in making a stock purchase “official” because his
boss has asked you to streamline the process whereby stock pur-
chase information is stored in the computer system and retrieved.
After you leave, Richard continues thinking about the pink
forms. He tells his clerk, Harry Schultz, “In my two months here, I
haven’t seen anyone use those. They take up my time and yours, not
to mention all the filing space. Let’s pitch them.”
Richard and Harry proceed to open all the old files kept by
Richard’s predecessor and throw out the filed pink forms, along with
those accumulated but not yet filed. It takes hours, but they make a
lot of room. “Definitely worth the time,” Richard reassures Harry.
Three weeks later, an assistant to Richard’s boss, Carol Vaness,
appears. Richard is happy to see a familiar face, greeting her with,
“Hi, Carol. What’s new?”
“Same old thing,” Carol sighs. “Well, I guess it isn’t old to you,
because you’re the newcomer. But I need all those pesky pink
forms.”
Almost in shock, Richard exchanges looks with Harry, then
mumbles, “You’re kidding, of course.”
Carol looks more serious than Richard ever thought possible,
replying, “No joke. I summarize all the pink forms from all the bro-
kers, and then my totals are compared with computerized stock pur-
chase information. It’s part of our routine, three-month audit for
transaction accuracy. My work depends on yours. Didn’t Ms. Mc-
Cue explain that to you when you started?”
What systems concept did Richard and Harry ignore when
tossing out the pink forms? What are the possible ramifications
for systems analysts if general systems concepts are ignored?
CHAPTER 2 • UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 45
Strategic management is the third level of three-tiered management control. Strategic man-
agers look outward from the organization to the future, making decisions that will guide middle
and operations managers in the months and years ahead.
Strategic managers work in a highly uncertain decision-making environment. Through state-
ments of goals and the determination of strategies and policies to achieve them, strategic man-
agers actually define the organization as a whole. Theirs is the broad picture, wherein the
company decides to develop new product lines, divest itself of unprofitable ventures, acquire
other compatible companies, or even allow itself to be acquired or merged.
There are sharp contrasts among the decision makers on many dimensions. For instance,
strategic managers have multiple decision objectives, whereas operations managers have single
ones. It is often difficult for high-level managers to identify problems, but it is easy for operations
managers to do so. Strategic managers are faced with semistructured problems, whereas lower-
level managers deal mostly with structured problems.
The alternative solutions to a problem facing the strategic managers are often difficult to ar-
ticulate, but the alternatives that operations managers work with are usually easy to enumerate.
Strategic managers most often make one-time decisions, whereas the decisions made by opera-
tions managers tend to be repetitive.
Implications for Information Systems Development
Each of the three management levels holds differing implications for developing information sys-
tems. Some of the information requirements for managers are clear-cut, whereas others are fuzzy
and overlapping.
Operations managers need internal information that is of a repetitive, low-level nature. They
are highly dependent on information that captures current performance, and they are large users
of online, real-time information resources. The need of operations managers for past performance
information and periodic information is only moderate. They have little use for external informa-
tion that allows future projections.
On the next management level, middle managers are in need of both short- and longer-term
information. Due to the troubleshooting nature of their jobs, middle managers experience ex-
tremely high needs for information in real time. To control properly, they also need current infor-
mation on performance as measured against set standards. Middle managers are highly dependent
on internal information. In contrast to operations managers, they have a high need for historical
information, along with information that allows for the prediction of future events and simulation
of numerous possible scenarios.
Strategic managers differ somewhat from both middle and operations managers in their in-
formation requirements. They are highly dependent on information from external sources that
supply news of market trends and the strategies of competing corporations. Because the task of
strategic managing demands projections into the uncertain future, strategic managers have a high
need for information of a predictive nature and information that allows creation of many differ-
ent what-if scenarios. Strategic managers also exhibit strong needs for periodically reported in-
formation as they seek to adapt to fast-moving changes.
ORGANIZATIONAL CULTURE
Organizational culture is an established area of research that has grown remarkably in the last
generation. Just as it is appropriate to think of organizations as including many technologies, it is
similarly appropriate to see them as hosts to multiple, often competing subcultures.
There is still little agreement on what precisely constitutes an organizational subculture. It is
agreed, however, that competing subcultures may be in conflict, attempting to gain adherents to
their vision of what the organization should be. Research is in progress to determine the effects
of virtual organizations and virtual teams on the creation of subcultures when members do not
share a physical workspace but share tasks.
Rather than thinking about culture as a whole, it is more useful to think about the researchable
determinants of subcultures, such as shared verbal and nonverbal symbolism. Verbal symbolism in-
cludes shared language used to construct, convey, and preserve subcultural myths, metaphors, vi-
sions, and humor. Nonverbal symbolism includes shared artifacts, rites, and ceremonies; clothing
46 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
of decision makers and workers; the use, placement, and decoration of offices; and rituals for cele-
brating members’ birthdays, promotions, and retirements.
Subcultures coexist within “official” organizational cultures. The officially sanctioned cul-
ture may prescribe a dress code, suitable ways to address superiors and coworkers, and proper
ways to deal with the outside public. Subcultures may be powerful determinants of information
requirements, availability, and use.
Organizational members may belong to one or more subcultures in the organization. Subcul-
tures may exert a powerful influence on member behavior, including sanctions for or against the
use of information systems.
Understanding and recognizing predominant organizational subcultures may help the sys-
tems analyst overcome the resistance to change that arises when a new information system is in-
stalled. For example, the analyst might devise user training to address specific concerns of
organizational subcultures. Identifying subcultures may also help in the design of decision sup-
port systems that are tailored for interaction with specific user groups.
SUMMARY
There are three broad organizational fundamentals to consider when analyzing and designing information
systems: the concept of organizations as systems, the various levels of management, and the overall organi-
zational culture.
Organizations are complex systems composed of interrelated and interdependent subsystems. In addi-
tion, systems and subsystems are characterized by their internal environments on a continuum from open to
closed. An open system allows free passage of resources (people, information, materials) through its bound-
aries; closed systems do not permit free flow of input or output. Organizations and teams can also be organ-
ized virtually with remote members connected electronically who are not in the same physical workspace.
Enterprise resource planning systems are integrated organizational (enterprise) information systems devel-
oped with customized, proprietary software that help the flow of information between the functional areas
in the organization. They support a systems view of the organization.
C O N S U L T I N G O P P O R T U N I T Y 2 . 3
Pyramid Power
“We really look up to you,” says Paul LeGon. As a systems an-
alyst, you have been invited to help Pyramid, Inc., a small, inde-
pendent book-publishing firm that specializes in paperback books
outside of the publishing mainstream.
Paul continues, “We deal with what some folks think are fringe
topics. You know, pyramid power, end-of-the-world prophecies, and
healthier living by thinking of the color pink. Sometimes when peo-
ple see our books, they just shake their heads and say, ‘Tut—uncom-
mon topic.’ But we’re not slaves to any particular philosophy, and
we’ve been very successful. So much so that because I’m 24, people
call me the ‘boy king.’” Paul pauses to decipher your reaction.
Paul continues, “I’m at the top as president, and functional areas
such as editorial, accounting, production, and marketing are under me.”
Paul’s assistant, Ceil Toom, who has been listening quietly up
to now, barges in with her comments: “The last systems experts that
did a project for us recommended the creation of liaison committees
of employees between accounting, production, and marketing, so
that we could share newly computerized inventory and sales figures
across the organization. They claimed that committees such as that
would cut down on needless duplication of output, and each func-
tional area would be better integrated with all the rest.”
Paul picks up the story, saying, “It was fair—oh, for a while—
and the employees shared information, but the reason you’re here is
that the employees said they didn’t have time for committee meet-
ings and were uncomfortable sharing information with people from
other departments who were further up the ladder than they were
here at Pyramid.”
According to Paul and Ceil, what were the effects of installing
a management information system at Pyramid, Inc., that required
people to share information in ways that were not consistent with
their structure? Propose some general ways to resolve this problem
so that Pyramid employees can still obtain the sales and inventory
figures they need.
CHAPTER 2 • UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 47
H Y P E R C A S E ® E X P E R I E N C E 2
Organizational cultures and subcultures are important determi-
nants of how people use information and information systems. By
grounding information systems in the context of the organization as a
larger system, it is possible to realize that numerous factors are impor-
tant and should be taken into account when ascertaining information
requirements and designing and implementing information systems.
HYPERCASE Questions
1. What major organizational change recently took place at
MRE? What department(s) was (or were) involved? Why
was the change made?
2. What are the goals of the Training and Management Systems
Department?
3. Would you categorize MRE as a service industry, a
manufacturer, or both? What kind of “products” does MRE
“produce”? Suggest how the type of industry MRE is in
affects the information systems it uses.
4. What type of organizational structure does MRE have? What
are the implications of this structure for MIS?
5. Describe in a paragraph the “politics” of the Training and
Management Systems Department at MRE. Who is involved,
and what are some of the main issues?
6. Draw a use case diagram representing the activities of the
Webster Design group at MRE when developing site and
facility master plans (use the MRE Web site to obtain your
basic information).
FIGURE 2.HC1
Click on key words in the HyperCase and find
out more detail.
“You seem to have already made a good
start at MRE. I’m glad you met Snowden Evans.
As you know, you’ll be reporting directly to him
during your consulting project. As his adminis-
trative assistant for the last five years I can tell
you a lot about the company, but remember that
there are a number of ways to find out more. You
will want to interview users, observe their deci-
sion-making settings, and look at archival re-
ports, charts, and diagrams. To do so, you can
click on the phone directory to get an appoint-
ment with an interviewee, click on the building
map to view the layout of the building, or click on
the corporate Web site to see the functional areas
and formal hierarchical relationships at MRE.
“Many of the rules of corporate life apply
in the MRE HyperCase. You can walk freely in
many public areas. If you want to tour a private
office, however, you must first book an ap-
pointment with one of our employees. Some se-
cure areas are strictly off limits to you as an
outsider since you could pose a security risk.
“I don’t think you’ll find us excessively secretive, however,
because you may assume that any employee who grants you an in-
terview will also grant you access to the archival material in his or
her files as well as to current work on their desktops or screens.
“Unfortunately, some people in the company never seem to
make themselves available to consultants. I suggest you be persist-
ent. There are lots of ways to find out about the people and the sys-
tems of MRE. Creativity pays off. You’ll notice that the systems
consultants who follow their hunches, sharpen their technical skills,
and never stop thinking about piecing together the puzzles at MRE
are the ones who get the best results.
“Remember to use multiple methods—interviewing, observa-
tion, and investigation—to understand what we at MRE are trying
to tell you. Sometimes actions, documents, and offices actually
speak louder than words!”
There are many ways to graphically depict the system. The ana-
lyst should choose among these tools early on to get an overview of
the system. These approaches include drawing context-level data flow
diagrams, capturing relationships early on with entity-relationship di-
agrams; or drawing use case diagrams or writing use case scenarios
based on user stories. Using these diagrams and techniques at the be-
ginning of analysis can help the analyst define the boundaries and
scope of the system, and can help bring into focus which people and
systems are external to the system being developed.
Entity-relationship diagrams help the systems analyst under-
stand the entities and relationships that comprise the organizational
system. E-R diagrams can depict a one-to-one relationship, a one-
to-many relationship, a many-to-one relationship, and a many-to-
many relationship.
The three levels of managerial control are operational, middle
management, and strategic. The time horizon of decision making is
different for each level.
48 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
KEYWORDS AND PHRASES
actor
associative entity
attributive entity
closedness
context-level data flow diagram
crow’s foot notation
enterprise resource planning (ERP)
enterprise systems
entity (fundamental entity)
entity-relationship (E-R) diagrams
environment
feedback
four levels of use cases
interdependent
interrelatedness
middle management
openness
operations management
organizational boundaries
organizational culture
scope of the system
strategic management
systems
use case
use case diagram
use case scenario
virtual enterprise
virtual organization
virtual team
REVIEW QUESTIONS
1. What are the three groups of organizational fundamentals that carry implications for the development
of information systems?
2. What is meant by saying that organizational subsystems are interrelated and interdependent?
3. Define the term organizational boundary.
4. What are the two main purposes for feedback in organizations?
5. Define openness in an organizational environment.
6. Define closedness in an organizational environment.
7. What is the difference between a traditional organization and a virtual one?
8. What are the potential benefits and a drawback of a virtual organization?
9. Give an example of how systems analysts could work with users as a virtual team.
10. What are enterprise systems?
11. What is ERP, and what is its purpose?
12. What problems do analysts often encounter when they try to implement an ERP package?
13. What are the two symbols on a use case diagram, and what do they represent?
14. What is a use case scenario?
15. What are the three main parts of a use case scenario?
16. What are the four steps in creating use case descriptions?
17. What are the five altitude metaphors for describing use case on different levels? What do they
represent?
18. What does a process represent on a context-level data flow diagram?
19. What is an entity on a data flow diagram?
20. What is meant by the term entity-relationship diagram?
21. What symbols are used to draw E-R diagrams?
22. List the types of E-R diagrams.
23. How do an entity, an associative entity, and an attributive entity differ?
24. List the three broad, horizontal levels of management in organizations.
25. How can understanding organizational subcultures help in the design of information systems?
PROBLEMS
1. “It’s hard to focus on what we want to achieve. I look at what our real competitors, the convenience
stores, are doing and think we should copy that. Then a hundred customers come in, and I listen to
each of them, and they say we should keep our little store the same, with friendly clerks and old-
fashioned cash registers. Then, when I pick up a copy of SuperMarket News, they say that the wave
of the future is super grocery stores, with no individual prices marked and UPC scanners replacing
clerks. I’m pulled in so many directions I can’t really settle on a strategy for our grocery store,”
admits Geoff Walsham, owner and manager of Jiffy Geoff’s Grocery Store.
In a paragraph, apply the concept of permeable organizational boundaries to analyze Geoff’s
problem in focusing on organizational objectives.
2. Write seven sentences explaining the right-to-left relationships in Figure 2.8.
CHAPTER 2 • UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 49
3. Draw an entity-relationship diagram of a patient–doctor relationship.
a. Which of the types of E-R diagrams is it?
b. In a sentence or two, explain why the patient–doctor relationship is diagrammed in this way.
4. You began drawing E-R diagrams soon after your entry into the health maintenance organization for
which you’re designing a system. Your team member is skeptical about using E-R diagrams before
the design of the database is begun. In a paragraph, persuade your team member that early use of E-R
diagrams is worthwhile.
5. Neil is a decision maker for Pepe’s Atlantic Sausage Company. Because there are several suppliers of
ingredients and their prices fluctuate, he has come up with several different formulations for the various
sausages that he makes, depending on the availability of particular ingredients from particular suppliers.
He then orders ingredients accordingly twice a week. Even though he cannot predict when ingredients
will become available at a particular price, his ordering of supplies can be considered routine.
a. On what level of management is Neil working? Explain in a paragraph.
b. What attributes of his job would have to change before you would categorize him as working on
a different level of management? List them.
6. Many of the people who work at Pepe’s (Problem 5) are extremely dedicated to Pepe’s and have
devoted their lives to the company. Others feel that the company is behind the times and should use
more sophisticated production systems, information systems, and supply chain management to make
the company more competitive. Members of a third group feel that what they do is unappreciated.
Describe the various subculture in words. Assign them a name based on their emotions.
7. Alice in the human resources department at the Cho Manufacturing plant is constantly being asked
by employees how much is taken out of their paychecks for insurance, taxes, medical, mandatory
retirement, and voluntary retirement. “It takes up to a few hours every day,” says Alice.
She would like a Web system that would allow employees to use a secure logon to view the
information. Alice wants the system to interface with health and dental insurance companies to
obtain the amount remaining in the employee’s account for the year. She would also like to obtain
retirement amounts saved along with investment results. Alice has a high regard for privacy and
wants the system to have employees register and give permission to obtain financial amounts from
the dental insurance and retirement companies. Draw a use case diagram representing the activities
of the Employee Benefit system.
8. Write up a use case scenario for the use case diagram you constructed for Cho Manufacturing.
9. What level are you creating your use case at? Choose one of the four altitude metaphors and explain
why you chose it.
10. Create a context-level data flow diagram for the Employee Benefit system in Problem 7. Make any
assumptions about the data to and from the central process. Do you find this to be better or not as
good at explaining the system to Alice than the use case and use case scenarios?
11. Draw a use case and write up a use case scenario for getting two or three email accounts. Think about
the steps that are needed to ensure security.
GROUP PROJECTS
1. Break up into groups of five. Assign one person to act as the Web site designer, one to write copy for
a company’s product, one to keep track of customer payments, one to monitor distribution, and one
to satisfy customers who have questions about using the product. Then select a simple product (one
that does not have too many versions). Good examples are a digital camera, a DVD player, a GPS, a
box of candy, or a specialty travel hat (rainproof or sunblocker). Now spend 20 minutes trying to
explain to the Web site designer what to include on the Web site. Describe in about three paragraphs
what experience your group had in coordination. Elaborate on the interrelatedness of subsystems in
the organization (your group).
2. In a small group, develop a use case and a use case scenario for making air, hotel, and car
reservations for domestic travel.
3. Change your answer in Group Project 2 to include foreign travel. How does the use case and use case
scenario change?
4. With your group, draw a context-level data flow diagram of your school’s or university’s registration
system. Label each entity and process. Discuss why there appear to be different ways to draw the
diagram. Reach consensus as a group about the best way to draw the diagram and defend your choice
in a paragraph. Now, working with your group’s members, follow the appropriate steps for
developing an E-R diagram and create one for your school or university registration system. Make
sure your group indicates whether the relationship you depict is one-to-one, one-to-many, many-to-
one, or many-to-many.
50 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
SELECTED BIBLIOGRAPHY
Bleeker, S. E. “The Virtual Organization.” Futurist, Vol. 28, No. 2, 1994, pp. 9–14.
Chen, P. “The Entity-Relationship Model—Towards a Unified View of Data.” ACM Transactions on Data-
base Systems, Vol. 1, March 1976, pp. 9–36.
Ching, C., C. W. Holsapple, and A. B. Whinston. “Toward IT Support for Coordination in Network Organi-
zations.” Information Management, Vol. 30, No. 4, 1996, pp. 179–199.
Cockburn, A. “Use Case Icons,” http://alistair.cockburn.us/Use�case�icons?version=8339&diff=8339&
with=6296. Last accessed March 18, 2009.
Davis, G. B., and M. H. Olson. Management Information Systems, Conceptual Foundations, Structure, and
Development, 2d ed. New York: McGraw-Hill, 1985.
Galbraith, J. R. Organizational Design. Reading, MA: Addison-Wesley, 1977.
Kendall, K. E., J. R. Buffington, and J. E. Kendall. “The Relationship of Organizational Subcultures to DSS
User Satisfaction.” Human Systems Management, March 1987, pp. 31–39.
Kulak, D., and E. Guiney. Use Cases: Requirement in Context, 2d ed. Boston: Pearson Education, 2004.
PeopleSoft. Available at: www.peoplesoft.com/corplen/public_index.jsp. Accessed June 3, 2003.
Warkentin, M., L. Sayeed, and R. Hightower. “Virtual Teams versus Face-to-Face Teams; An Exploratory
Study of a Web-Based Conference System.” In Emerging Information Technologies: Improving Deci-
sions, Cooperation, and Infrastructure. Edited by K. E. Kendall, pp. 241–262. Thousand Oaks, CA:
Sage Publications, 1999.
Yager, S. E. “Everything’s Coming Up Virtual.” Available at: www.acm.org/crossroads/xrds4-1/organ.html.
Accessed June 3, 2003.
www.peoplesoft.com/corplen/public_index.jsp
www.acm.org/crossroads/xrds4-1/organ.html
http://alistair.cockburn.us/Use+case+icons?version=8339&diff=8339&with=6296
http://alistair.cockburn.us/Use+case+icons?version=8339&diff=8339&with=6296
CHAPTER 2 • UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 51
E P I S O D E 2
CPU CASE
ALLEN SCHMIDT, JULIE E. KENDALL, AND KENNETH E. KENDALL
Picturing the Relationships
“So the project involves more than simply performing maintenance work on the current programs,” Chip
says. “Are we using a formal methodology for analyzing and designing the new system?”
“Yes,” replies Anna. “We are also using Microsoft Visio to create and modify the diagrams and some
simple repository information. We also have a CASE tool, Visible Analyst, to analyze and design the
system.1 We’ve recently installed the products on the computer in the office.”
With a few easy mouse clicks Anna comes to a context-level data flow diagram (see Figure E2.1). “It’s
very useful to begin thinking of the system this way,” Anna says as they look at the diagram on the screen.
Chip agrees, saying, “I can very easily see what you think is happening with the system. For instance,
I see that the external entity Management supplies hardware and software inquiries and receives the corre-
sponding responses in return. It shows the system within the larger organization.”
“I’ve also drawn a preliminary E-R diagram of the system,” Anna says as she brings up the entity-
relationship diagram on the screen (see Figure E2.2). “It may need modification as we learn more about
the system.”
“Yes, the many-to-many and one-to-many relationships are very clear when you look at this,” Chip
says, viewing the screen.
“There is one more view of the system,” continues Anna, opening the use case diagram. “This is the pre-
liminary use case diagram for our system (see Figure E2.3). We are going to use it to obtain some valuable
New Computer Form
Software Received
Repaired Computer
Hardware Master Report
Software Master Report
EE 4
Context
Hardware Inquiry Response
Software Inquiry Response
Hardware Inquiry
Software Inquiry
Software Inquiry Inquiry Response
EE 1
Management
EE 2
Faculty
Computer
Inventory
System
Clerical
Support
EE 5
EE 3
Maintenance
EE 1
Management
EE 2
Faculty
Shipping/
Receiving
Dept.
FIGURE E2.1
Context-level data flow diagram,
current system.
1For more details on how to begin using Visible Analyst, see Allen Schmidt, Working with Visible Analyst, 2d ed.
(Upper Saddle River, NJ: Prentice Hall, 2004).
52 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
has
Software
performed on
Computer
can have
Hardware and
Software
located
within
has provides warranty
Vendor
Room
Operating System
Computer
Maintenance
FIGURE E2.2
Entity-relationship diagram,
current system.
Shipping/Receiving Department
Software User
Create Software
Category
<
Maintenance
Clerical Support
Management
Add New Computer
Add Software
Produce Hardware
Investment Report
Produce Hardware
Software Cross
Reference Report
Query Training
Classes
FIGURE E2.3
Use case diagram for the CPU
computer system.
CHAPTER 2 • UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 53
feedback from the users. The use cases are not all complete, but I can show you one of them.” Anna clicks on
the use case symbol, displaying the use case description in the repository shown in Figure E2.4.
“You’ve got a good start here,” Chip continues as he eyes the use case description. “This helps to un-
derstand the activities that take place. Let’s get to work and see what needs to be done next.”
EXERCISES
E-1. Use Microsoft Visio or Visible Analyst to view and print the context-level data flow diagram for the
computer inventory system, as Chip and Anna did.
E-2. Use the Repository feature or the Repository Web page to view the entry for the central process.
E-3. Use Microsoft Visio or Visible Analyst to view and print the entity-relationship diagram for the com-
puter inventory system.
E-4. Explain why the external entities on the context-level diagram are not found on the entity-
relationship diagram.
Use case name: Add New Computer
Area: Computer Inventory
Actors: Shipping/Receiving Department, Maintenance
Stakeholder: Faculty, Student, Staff
Level: Blue
Description: Add a new computer and generate a list of all machines for software installation
Trigger: Add Computer menu choice clicked
Trigger Type: External Temporal
Steps Performed (Main Path)
1. Information is entered about new computers.
2. Computer is added to Computer Master.
3. Pending orders are updated with computers that have been received.
4. Produce the Installation Listing report for all desktop models.
5. Produce Software Installation Listing report showing all standard.software for all received computers.
Information for Steps
Invoice and specification sheets
Computer Master
Pending Order database table
Computer Master
Computer Master
Preconditions: Computer has been received by the receiving department.
Postconditions: A computer has been added to the database and reports have been generated.
Assumptions: User has successfully logged on with access to Add Computer screen.
Success Guarantee: A computer has been added to the database and required reports printed.
Minimum Guarantee: Computer has been received and will be added later.
Objectives Met: Add and install new computers.
Outstanding Issues: What course of action should be taken when pending computers do not match those received.Priority (optional): High
Risk (optional): Medium
FIGURE E2.4
Use case scenario for the CPU
computer system.
54 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
Software is keyed into the new system and validated Software received form
Software is added to the Software Master Software Master
The Software Installation List is produced Software Master, Order
The software user is notified about installed software Order
E-5. Explain why the entities MANAGEMENT and FACULTY are found on both sides of the process on
the context-level diagram.
E-6. Use Microsoft Visio or Visible Analyst to view and print the use case diagram for the computer in-
ventory system.
E-7. Add the following actors and use cases to the use case diagram:
a. FACULTY actor in the lower left side of the use case diagram.
b. Connect the FACULTY actor to the QUERY TRAINING CLASSES use case.
c. Since the computers may have software installed for a specific computer lab, the clerical support
staff may be responsible for installing software on the computers. Connect the CLERICAL SUP-
PORT actor to the ADD SOFTWARE use case.
d. Add two new use cases below the QUERY TRAINING CLASSES use case: QUERY SOFT-
WARE EXPERT and below it, QUERY SOFTWARE INFORMATION.
e. Connect the FACULTY actor to the QUERY SOFTWARE EXPERT and QUERY SOFTWARE
INFORMATION use cases.
f. Connect the MANAGEMENT actor to the QUERY SOFTWARE EXPERT use case.
E-8. Add the INSTALL DESKTOP COMPUTER use case to the upper right area of the diagram. This use
case extends the ADD NEW COMPUTER use case.
E-9. Add a use case description for the ADD SOFTWARE use case. It should contain the following infor-
mation:
a. Obtain the use case name and actors from the use case diagram. The stakeholder and level are the
same as those in Figure E2.3.
b. The description should be: Add new software to the Software database table and print an instal-
lation listing.
c. The activity is started (triggered) when the user clicks the Add Software menu item.
d. The steps performed and information for steps are:
e. Preconditions are that software has been received. Postconditions are that the software has been
added to the database and reports have been created. Assumptions are that the user has success-
fully logged on with access to the Add Software entry screen. A success guarantee is that the soft-
ware has been added to the database and the required report printed. A minimum guarantee is that
the software has been received. The objectives met are to add and install new software. The out-
standing issue is how to determine which software to install on which machines. The priority is
high and the risk is medium.
E-10. Write a use case description for the PRODUCE HARDWARE SOFTWARE CROSS REFERENCE
REPORT use case. Use the use case diagram to determine the heading information, making any rea-
sonable assumptions. The steps would be to read a software record, use that information to read the
hardware-software relational table, then read the hardware record. Use the hardware record to print a
line, accumulating totals. Print subtotals and grand totals. This is a medium priority, low-risk activ-
ity. Preconditions are that all the information must have been previously added to the appropriate
database tables. Postconditions are that the report has been printed. Assumptions are that all the in-
formation on the database tables is correct. A success guarantee would be the report has been success-
fully created. A minimum guarantee would be the report could not be printed. The objectives met are
to produce information about what software is found on which machine. Outstanding issues are: What
if the software is older and is not currently installed on any machines, how should the report be pro-
duced: printed, in a PDF file, or should it really be a query for one software package?
CHAPTER 2 • UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 55
E-11. Write the use case description for the PRODUCE HARDWARE INVESTMENT REPORT use case.
Use the use case diagram to define the header information. The steps involve reading each hardware
record, counting the number of machines, and totaling the amount invested in them for each computer
model. When the computer brand changes, produce subtotals, with a grand total at the end of the re-
port. All information comes from the Hardware Master database table. Make any reasonable assump-
tions about preconditions, postconditions, assumptions, success guarantee, minimum guarantee,
objectives met, outstanding issues, priority, and risk.
E-12. Write the use case description for the QUERY TRAINING CLASSES use case. Use the use case di-
agram to define the header information. The steps involve entering information on the Web form, val-
idating the information, and storing the data on a Training Request database table. Make any
reasonable assumptions about preconditions (such as if the software have to be already purchased),
postconditions, assumptions, success guarantee, minimum guarantee, objectives met, outstanding is-
sues, priority (would this be a high priority task), and risk.
The exercises preceded by a www icon indicate value-added material that is available from the Web site at
www.pearsonhighered.com/kendall. Students can download a sample Microsoft Visio, Visible Analyst, Microsoft
Project, or a Microsoft Access file that can be used to complete the exercises. Alternatively, many of the exercises can
be accomplished manually if software is unavailable.
www.pearsonhighered.com/kendall
56
C H A P T E R 3
Project Management
LEARNING OBJECTIVES
Once you have mastered the material in this chapter you will be able to:
1. Understand how projects are initiated and selected, define a business problem, and
determine the feasibility of a proposed project.
2. Inventory and appraise current and proposed hardware and software and the way it
supports human interactions with technology.
3. Evaluate software by addressing the trade-offs among creating custom software,
purchasing COTS software, and outsourcing to an application service provider.
4. Forecast and analyze tangible and intangible costs and benefits.
5. Plan a project by identifying activities and scheduling them.
6. Manage team members and analysis and design activities so that the project objectives are
met while the project remains on schedule.
7. Professionally write and present an effective systems proposal, concentrating on both
content and design.
Initiating projects, determining project feasibility, scheduling projects, and
planning and then managing activities and team members for productiv-
ity are all important capabilities for the systems analyst to master.As such,
they are considered project management fundamentals.
A systems project begins with problems or with opportunities for im-
provement in a business that often come up as the organization adapts to change.The increas-
ing popularity of ecommerce means that some fundamental changes are occurring as
businesses either originate their enterprises on, or move their internal operations as well as ex-
ternal relationships to, the Internet. Changes that require a systems solution occur in the legal
environment as well as in the industry’s environment. Analysts work with users to create a
problem definition reflecting current business systems and concerns. Once a project is sug-
gested, the systems analyst works quickly with decision makers to determine whether it is fea-
sible. If a project is approved for a full systems study, the project activities are scheduled
through the use of tools such as Gantt charts and Program Evaluation and Review Techniques
(PERT) diagrams so that the project can be completed on time. Part of assuring the productiv-
ity of systems analysis team members is effectively managing their scheduled activities. This
chapter is devoted to a discussion of project management fundamentals.
PROJECT INITIATION
Systems projects are initiated by many different sources for many reasons. Some of the projects
suggested will survive various stages of evaluation to be worked on by you (or you and your
team); others will not and should not get that far. Businesspeople suggest systems projects for two
broad reasons: (1) because they experience problems that lend themselves to systems solutions,
and (2) because they recognize opportunities for improvement through upgrading, altering, or in-
stalling new systems when they occur. Both situations can arise as the organization adapts to and
copes with natural, evolutionary change.
Problems in the Organization
Managers do not like to conceive of their organization as having problems, let alone talk about
them or share them with someone from outside. Good managers, however, realize that recogniz-
ing symptoms of problems or, at a later stage, diagnosing the problems themselves and then con-
fronting them are imperative if the business is to keep functioning at its highest potential.
Problems surface in many different ways. One way of conceptualizing what problems are and
how they arise is to think of them as situations in which goals have never been met or are no
longer being met. Useful feedback gives information about the gap between actual and intended
performance. In this way feedback spotlights problems.
In some instances problems that require the services of systems analysts are uncovered be-
cause performance measures are not being met. Problems (or symptoms of problems) with
processes that are visible in output and that could require the help of a systems analyst include
excessive errors and work performed too slowly, incompletely, incorrectly, or not at all. Other
symptoms of problems become evident when people do not meet baseline performance goals.
Changes in employee behavior such as unusually high absenteeism, high job dissatisfaction, or
high worker turnover should alert managers to potential problems. Any of these changes, alone
or in combination, might be sufficient reason to request the help of a systems analyst.
Although difficulties such as those just described occur in the organization, feedback on how
well the organization is meeting intended goals may come from outside, in the form of complaints
or suggestions from customers, vendors, or suppliers, and lost or unexpectedly lower sales. This
feedback from the external environment is extremely important and should not be ignored.
A summary of symptoms of problems and approaches useful in problem detection is pro-
vided in Figure 3.1. Notice that checking output, observing or researching employee behavior,
and listening to feedback from external sources are all valuable in problem finding. When react-
ing to accounts of problems in the organization, the systems analyst plays the roles of consultant,
supporting expert, and agent of change, as discussed in Chapter 1. As you might expect, roles for
the systems analyst shift subtly when projects are initiated because the focus is on opportunities
for improvement rather than on the need to solve problems.
Defining the Problem
Whether using the classical SDLC or an object-oriented approach, the analyst first defines the
problems and objectives of the system. These form the foundation of determining what needs to
be accomplished by the system. Methods like Six Sigma (refer to Chapter 16 for details) start with
a problem definition.
CHAPTER 3 • PROJECT MANAGEMENT 57
Check output against performance criteria.
Observe behavior of employees.
Listen to external feedback from:
Vendors.
Customers.
Suppliers.
• Too many errors
• Work completed slowly
• Work done incorrectly
• Work done incompletely
• Work not done at all
• High absenteeism
• High job dissatisfaction
• High job turnover
Look for These Specific Signs:To Identify Problems
• Complaints
• Suggestions for improvement
• Loss of sales
• Lower sales
FIGURE 3.1
Checking output, observing
employee behavior, and listening
to feedback are all ways to help
the analyst pinpoint systems
problems and opportunities.
A problem definition usually contains some sort of problem statement, summarized in a para-
graph or two. This is followed by a series of issues, or major, independent pieces of the problem.
The issues are followed by a series of objectives, or goals that match the issues point by point. Is-
sues are the current situation; objectives are the desired situation. The objectives may be very spe-
cific or worded using a general statement.
Here are some examples of business questions relating to business objectives:
� What are the purposes of the business?
� Is the business profit or nonprofit?
� Does the company plan to grow or expand?
� What is the business’s attitude (culture) about technology?
� What is the business’s budget for IT?
� Does the business’s staff have the expertise?
Needless to say, the systems analyst needs to understand how a business works.
The last part of the problem definition contains requirements, the things that must be accom-
plished, along with the possible solutions and the constraints that limit the development of the
system. The requirements section may include security, usability, government requirements, and
so on. Constraints often include the word not, indicating a limitation, and may contain budget re-
strictions or time limitations.
The problem definition is produced after completing interviews, observations, and document
analysis with the users. The result of gathering this information is a wealth of facts and important
opinions in need of summary. The first step in producing the problem definition is to find a num-
58 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
C O N S U L T I N G O P P O R T U N I T Y 3 . 1
The Sweetest Sound I’ve Ever Sipped
Felix Straw, who represents one of the many U.S. distributors of
the European soft drink Sipps, gazes unhappily at a newspaper
weather map, which is saturated with dark red, indicating that most
of the United States is experiencing an early spring heat wave with
no signs of a letup. Pointing to the paper as he speaks, he tells your
systems group, “It’s the best thing that could happen to us, or at least
it should be. But when we had to place our orders three months ago,
we had no idea that this spring monster heat wave was going to de-
vour the country this way!” Nodding his head toward a picture of
their European plant on the wall, he continues. “We need to be able
to tell them when things are hot over here so we can get enough
product. Otherwise, we’ll miss out every time. This happened two
years ago and it just about killed us.
“Each of us distributors meets with our district managers to do
three-month planning. When we agree, we fax our orders into Eu-
ropean headquarters. They make their own adjustments, bottle the
drinks, and then we get our modified orders about 9 to 15 weeks
later. But we need ways to tell them what’s going on now. Why, we
even have some new superstores that are opening up here. They
should know we have extra-high demand.”
Corky, his assistant, agrees, saying, “Yeah, they should at least
look at our past sales around this time of year. Some springs are hot,
others are just average.”
Straw concurs, saying, “It would be music to my ears, it would
be really sweet, if they would work with us to spot trends and
changes—and then respond quickly.”
Stern’s, based in Blackpool, England, is a European beverage
maker and the developer and producer of Sipps. Sipps is a sweet,
fruit-flavored, nonalcoholic, noncarbonated drink, which is served
chilled or with ice, and it is particularly popular when the weather
is hot. Selling briskly in Europe and growing in popularity in the
United States since its introduction five years ago, Sipps has had a
difficult time adequately managing inventory and keeping up with
U.S. customer demand, which is affected by seasonal temperature
fluctuations. Places with year-round, warm-temperature climates
and lots of tourists (such as Florida and California) have large stand-
ing orders, but other areas of the country could benefit from a less
cumbersome, more responsive order-placing process. Sipps is dis-
tributed by a network of local distributors located throughout the
United States and Canada.
As one of the systems analysts assigned to work with the U.S.
distributors of Sipps, begin your analysis by listing some of the
key symptoms and problems you have identified after studying
the information flows, ordering process, and inventory manage-
ment, and after interviewing Mr. Straw and his assistant. In a para-
graph describe which problems might indicate the need for a
systems solution.
Note: This consulting opportunity is loosely based on J. C. Perez,
“Heineken’s HOPS Software Keeps A-Head on Inventory,” PC Week, Vol.
14, No. 2, January 13, 1997, pp. 31 and 34.
CHAPTER 3 • PROJECT MANAGEMENT 59
ber of points that may be included in one issue. Major points can be identified in the interview in
a number of ways:
1. Users may identify an issue, topic, or theme that is repeated several times, sometimes by
different people in several interviews.
2. Users may communicate the same metaphors, such as saying the business is a journey, war,
game, organism, machine, and so on.
3. Users may speak at length on a topic.
4. Users may tell you outright that “This is a major problem.”
5. Users may communicate importance by body language or may speak emphatically on an
issue.
6. The problem may be the first thing mentioned by the user.
Once the issues have been created, the objectives must be stated. At times the analyst may
have to do a follow-up interview to obtain more precise information about the objectives. After
the objectives are stated, the relative importance of the issues or objectives must be determined.
If there are not enough funds to develop the complete system, the most critical objectives must
be completed first. The identification of the most critical objectives is best done by users (with
the support of analysts), because users are domain experts in their business area and in how they
work best with technologies in the organization.
One technique is to ask the users to assign a weight for each issue or objective of the first
draft of the problem definition. This is a subjective judgment by the user, but, if a number of users
all assign weights and they are averaged together, the result might reflect the bigger picture. Af-
ter the weights have been determined, the problem definition issues and objectives are rese-
quenced in order of decreasing importance, the most important issues listed first. There is
software such as Expert Choice (www.expertchoice.com) and other decision support software
that can assist with the weighting and prioritizing of objectives.
Besides looking through data and interviewing people, try to witness the problem firsthand.
When looking at the same situation, an employee may view a problem very differently than a sys-
tems analyst does. This also gives analysts the opportunity to confirm their findings. In this way
they use multiple methods, thereby strengthening the case for taking appropriate action.
A PROBLEM DEFINITION EXAMPLE: CATHERINE’S CATERING. Catherine’s Catering is a small
business that caters meals, receptions, and banquets for business and social occasions such as
luncheons and weddings. It was inspired by Catherine’s love of cooking and her talent for
preparing fine meals. At first it was a small company with a handful of employees working on
small projects. Catherine met with customers to determine the number of people, the type of
meals, and other information necessary to cater an event. As their reputation for creating superb
food and the quality of the service began to blossom, the number of events started to increase. The
building of a new convention center, along with a prospering business community in the city,
increased the number of catering events.
Catherine was able to manage the business using spreadsheets and word processing but
found difficulty in keeping up with endless phone calls about what types of meals were avail-
able, changes to the number of guests attending the event, and the availability of specialty di-
etary items, such as vegan, vegetarian, low-fat, low-carbohydrate, and so on. Catherine’s
decisions to hire a number of part-time employees to cook and cater the events meant that the
complexity of scheduling personnel was becoming overwhelming to the new human resources
manager. Catherine decided to hire an IT and business consulting company to help her address
the problems her catering enterprise was facing.
After performing interviews and observing a number of key staff, the consultants found the
following concerns:
1. The master chef ordered supplies (produce, meat, and so on) from suppliers for each event.
The suppliers would provide discounts if greater quantities were ordered at a single time
for all events occurring in a given time frame.
2. Customers often called to change the number of guests for an event, with some changes
made only one or two days before the event was scheduled.
3. It was too time-consuming for Catherine and her staff to handle each request for catering,
with about 60 percent of the calls resulting in a contract.
www.expertchoice.com
60 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
4. Conflicts in employee schedules were occurring and some events were understaffed.
Complaints about the timeliness of service were becoming more frequent.
5. Catherine does not have any summary information about the number of events and types of
meals. It would be helpful to have trend information that would help guide her customers
in their choice of meals.
6. Events are often held at hotels or other meeting halls, which provide table settings for sit-
down meals. There are problems with having sufficient waitstaff and changes with the
number of guests.
The problem definition is shown in Figure 3.2. Notice the weights on the right, representing
an average of the weights assigned by each employee. Objectives match the issues. Each objec-
tive is used to create user requirements.
Problem DefinitionCatherine’s Catering is experiencing problems with handling the number of routine calls with customers, as well as
coordinating with external partners such as suppliers and meeting facilities. The growth in the number of part-time
staff is leading to scheduling conflicts and understaffed events.Issues
1. Customer contact takes an inordinate amount of time for routine questions.
2. Managing part-time employees is time-consuming and leads to scheduling errors.
3. It is difficult to accommodate last-minute changes for events.
4. Supplies are ordered for each event. Often shipments are received several times a day.
5. There are often problems communicating changes to event facilities.
6. There is little historical information about customers and meals.Objectives
1. Provide a Web system for customers to obtain pricing information and place orders.
2. Create or purchase a human resources system with a scheduling component.
3. After customers have signed an event contract, provide them with Web access to their
account and a means for them to update the number of guests. Notify management of changes.
4. Provide a means to determine overall quantities of supplies for events occurring within a
concurrent time frame.
5. Provide a system for communicating changes to key personnel at event facilities.
6. Store all event data and make summary information available in a variety of formats.Requirements
1. The system must be secure.2. Feedback must be entered by event managers at the close of each event.
3. There must be a means for event facilities to change their contact person.
4. The system must be easy to use by nontechnical people.Constraints
1. Development costs must not exceed $50,000.2. The initial Web site for customer orders must be ready by March 1 to accommodate requests
for graduation parties and weddings.
10
9
7
6
5
3
Weight
FIGURE 3.2
Problem definition for Catherine’s
Catering, developed with the help
of users.
CHAPTER 3 • PROJECT MANAGEMENT 61
User requirements are then used to create either use cases and a use case diagram or data flow
diagram processes. Each objective may create one or more user requirements or several objectives
may create one or perhaps no use cases (use cases are not often created for simple reports), or
each requirement may create one data flow diagram process. The user requirements for Cather-
ine’s Catering are to:
1. Create a dynamic Web site to allow current and potential clients to view and obtain pricing
information for a variety of different products.
2. Allow current and potential clients to submit a request with their catering choices, with the
request routed to an account manager.
3. Add clients to the client database, assigning them a userID and a password for access to
their projects.
4. Create a Web site for clients to view and update the number of guests for an event and
restrict changing the number of guests when the event day is less than five days in the
future.
5. Obtain or create software to communicate directly with event facility personnel.
6. Create or purchase a human resources system for scheduling part-time employees,
allowing management to add employees and schedule them using a number of constraints.
7. Provide queries or reports with summary information.
Each requirement may be used to create a preliminary test plan. Since scant details are avail-
able at this time, the test plan will be revised as the project progresses.
A simple test plan for Catherine’s Catering is:
1. Design test data that would allow clients to view each different type of product.
2. Test to ensure that a catering request has been entered with valid data, as well as each
possible condition of invalid data (data will be defined later). Ensure that the request is
routed to the appropriate account manager.
3. Test that all data fields pass all validation criteria for each field. Test good data to ensure
that clients are added to the client database, and that a userID and a password are correctly
assigned.
4. Create a test plan that will test that clients are able to view event information. Test that
updates may not be made within five days of the event. Design test data that will check to
ensure correct updating of the number of guests for an event.
5. Test that the software works correctly for communicating directly with event facility personnel.
6. Test the human resources system for scheduling part-time employees, checking that
employees have been correctly added and that all invalid values for each field are detected
and reported. Check scheduling software for valid updates and each invalid entry.
7. Check that all queries or reports work correctly and contain the correct summary
information.
Selection of Projects
Projects come from many different sources and for many reasons. Not all should be selected for
further study. You must be clear in your own mind about the reasons for recommending a systems
study on a project that seems to address a problem or could bring about improvement. Consider
the motivation that prompts a proposal on the project. You need to be sure that the project under
consideration is not being proposed simply to enhance your own political reputation or power, or
that of the person or group proposing it, because there is a high probability that such a project will
be ill-conceived and eventually ill-accepted.
As outlined in Chapter 2, prospective projects need to be examined from a systems perspec-
tive in such a way that you are considering the impact of the proposed change on the entire orga-
nization. Recall that the various subsystems of the organization are interrelated and
interdependent, so a change to one subsystem might affect all the others. Even though the deci-
sion makers directly involved ultimately set the boundaries for the systems project, a systems
project cannot be contemplated or selected in isolation from the rest of the organization.
Beyond these general considerations are five specific criteria for project selection:
1. Backing from management.
2. Appropriate timing of project commitment.
62 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
3. Possibility of improving attainment of organizational goals.
4. Practical in terms of resources for the systems analyst and organization.
5. Worthwhile project compared with other ways the organization could invest resources.
First and foremost is backing from management. Absolutely nothing can be accomplished
without the endorsement of the people who eventually will foot the bill. This statement does not
mean that you lack influence in directing the project or that people other than management can’t
be included, but management backing is essential.
Another important criterion for project selection includes timing for you and the organiza-
tion. Ask yourself and the others who are involved if the business is presently capable of making
a time commitment for installation of new systems or improvement to existing ones. You must
also be able to commit all or a portion of your time for the duration.
A third criterion is the possibility of improving attainment of organizational goals such as
(1) improving corporate profits, (2) supporting the competitive strategy of the organization, (3) im-
proving cooperation with vendors and partners, (4) improving internal operations support so that
goods and services are produced efficiently and effectively, (5) improving internal decision support
so that decisions are more effective, (6) improving customer service, and (7) increasing employee
morale. The project should put the organization on target, not deter it from its ultimate goals.
A fourth criterion is selecting a project that is practicable in terms of your resources and ca-
pabilities as well as those of the business. Some projects will not fall within your realm of exper-
tise, and you must be able to recognize them.
Finally, you need to come to a basic agreement with the organization about the worthiness of
the systems project relative to any other possible project being considered. There are many pos-
sibilities for improvements, including, (1) speeding up a process, (2) streamlining a process
through the elimination of unnecessary or duplicated steps, (3) combining processes, (4) reduc-
ing errors in input through changes of forms and display screens, (5) reducing redundant storage,
(6) reducing redundant output, and (7) improving integration of systems and subsystems. Re-
member that when a business commits to one project, it is committing resources that thereby be-
come unavailable for other projects. It is useful to view all possible projects as competing for the
business resources of time, money, and people.
DETERMINING FEASIBILITY
Once the number of projects has been narrowed according to the criteria discussed previously, it
is still necessary to determine if the selected projects are feasible. Our definition of feasibility
goes much deeper than common usage of the term, because systems projects feasibility is as-
sessed in three principal ways: operationally, technically, and economically. The feasibility study
is not a full-blown systems study. Rather, the feasibility study is used to gather broad data for the
members of management that in turn enables them to make a decision on whether to proceed with
a systems study.
Data for the feasibility study can be gathered through interviews, which are covered in detail
in Chapter 4. The kind of interview required is directly related to the problem or opportunity be-
ing suggested. The systems analyst typically interviews those requesting help and those directly
concerned with the decision-making process, typically management. Although it is important to
address the correct problem, the systems analyst should not spend too much time doing feasibil-
ity studies, because many projects will be requested and only a few can or should be executed.
The feasibility study must be highly time compressed, encompassing several activities in a short
span of time.
Determining Whether It Is Possible
After an analyst determines reasonable objectives for a project, the analyst needs to determine if
it is possible for the organization and its members to see the project through to completion. Gen-
erally, the process of feasibility assessment is effective in screening out projects that are incon-
sistent with the business’s objectives, technically impossible, or economically without merit.
Although it is painstaking, studying feasibility is worthwhile because it saves businesses and
systems analysts time and money. In order for an analyst to recommend further development, a
project must show that it is feasible in all three of the following ways: technically, economically,
and operationally, as shown in Figure 3.3.
CHAPTER 3 • PROJECT MANAGEMENT 63
TECHNICAL FEASIBILITY. The analyst must find out whether it is possible to develop the new
system given the current technical resources. If not, can the system be upgraded or added to in a
manner that fulfills the request under consideration? If existing systems cannot be added onto or
upgraded, the next question becomes whether there is technology in existence that meets the
specifications.
At the same time, the analyst can ask whether the organization has the staff who are techni-
cally proficient enough to accomplish the objectives. If not, the question becomes whether they
can hire additional programmers, testers, experts, or others who may have different programming
skills from theirs, or maybe outsource the project completely. Still another question is whether
there are software packages available that can accomplish their objectives, or does the software
need to be customized for the organization?
ECONOMIC FEASIBILITY. Economic feasibility is the second part of resource determination. The
basic resources to consider are your time and that of the systems analysis team, the cost of doing
a full systems study (including the time of employees you will be working with), the cost of the
business employee time, the estimated cost of hardware, and the estimated cost of software or
software development.
The concerned business must be able to see the value of the investment it is pondering before
committing to an entire systems study. If short-term costs are not overshadowed by long-term
gains or produce no immediate reduction in operating costs, the system is not economically fea-
sible and the project should not proceed any further.
OPERATIONAL FEASIBILITY. Suppose for a moment that technical and economic resources are
both judged adequate. The systems analyst must still consider the operational feasibility of the
requested project. Operational feasibility is dependent on the human resources available for the
project and involves projecting whether the system will operate and be used once it is installed.
If users are virtually wed to the present system, see no problems with it, and generally are
not involved in requesting a new system, resistance to implementing the new system will be
strong. Chances for it ever becoming operational are low.
Alternatively, if users themselves have expressed a need for a system that is operational more
of the time, in a more efficient and accessible manner, chances are better that the requested sys-
tem will eventually be used. Much of the art of determining operational feasibility rests with the
user interfaces that are chosen, as we see in Chapter 14.
ASCERTAINING HARDWARE AND SOFTWARE NEEDS
Assessing technical feasibility includes evaluating the ability of computer hardware and software
to handle workloads adequately. Figure 3.4 shows the steps the systems analyst takes in ascertain-
ing hardware and software needs. First, all current computer hardware the organization owns
must be inventoried to discover what is on hand and what is usable.
The systems analyst needs to work with users to determine what hardware will be needed.
Hardware determinations can come only in conjunction with determining human information
The Three Key Elements of Feasibility
Technical Feasibility
Add on to present system
Technology available to meet users’ needs
Economic Feasibility
Systems analysts’ time
Cost of systems study
Cost of employees’ time for study
Estimated cost of hardware
Cost of packaged software or software development
Operational Feasibility
Whether the system will operate when installed
Whether the system will be used
FIGURE 3.3
The three key elements of
feasibility include technical,
economic, and operational
feasibility.
64 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
requirements. Knowledge of the organizational structure (as discussed in Chapter 2) and how
users interact with technologies in an organizational setting can also be helpful in hardware de-
cisions. Only when systems analysts, users, and management have a good grasp of what kinds
of tasks must be accomplished can hardware options be considered.
Inventorying Computer Hardware
Begin by inventorying what computer hardware is already available in the organization. As will
become apparent, some of the hardware options involve expanding or recycling current hardware,
so it is important to know what is on hand.
If an updated computer hardware inventory is unavailable, the systems analyst needs to set
up one quickly and carry through on it. You need to know the following:
1. The type of equipment: model number, manufacturer.
2. The operation status of the equipment: on order, operating, in storage, in need of repair.
3. The estimated age of the equipment.
4. The projected life of the equipment.
5. The physical location of the equipment.
6. The department or person considered responsible for the equipment.
7. The financial arrangement for the equipment: owned, leased, rented.
Ascertaining the current hardware available will result in a sounder decision-making process
when hardware decisions are finally made, because much of the guesswork about what exists will
be eliminated. Through your earlier interviews with users, questionnaires surveying them, and re-
search of archival data, you will already know the number of people available for data processing
as well as their skills and capabilities. Use this information to project how well the staffing
needs for new hardware can be met.
Estimating Workloads
The next step in ascertaining hardware needs is to estimate workloads. Thus, systems analysts for-
mulate numbers that represent both current and projected workloads for the system so that any
hardware obtained will possess the capability to handle current and future workloads.
Steps in Acquiring Computer
Hardware and Software
Estimate
Workloads
Evaluate
HardwareOptionsPurchase Purchase
COTS
Lease
Rent
Use
ASP
Create
Options
Evaluate
Software
Acquire the
Computer
Equipment
Choose
the Vendor
Inventory
Computer
Hardware
FIGURE 3.4
Steps in choosing hardware and
software.
CHAPTER 3 • PROJECT MANAGEMENT 65
If estimates are accomplished properly, the business should not have to replace hardware solely
due to unforeseen growth in system use. (Other events, however, such as superior technological in-
novations, may dictate hardware replacement if the business wants to maintain its competitive edge.)
Out of necessity, workloads are sampled rather than actually put through several computer
systems. The guidelines given on sampling in Chapter 5 can be of use here, because in workload
sampling, the systems analyst is taking a sample of necessary tasks and the computer resources
required to complete them.
Figure 3.5 is a comparison of the times required by an existing and a proposed information
system that are supposed to handle a given workload. Notice that the company is currently using
a legacy computer system to prepare a summary of shipments to its distribution warehouses, and
a Web-based dashboard is being suggested. The workload comparison looks at when and how
each process is done, how much human time is required, and how much computer time is needed.
Notice that the newly proposed system should cut down the required human and computer time
significantly.
Evaluating Computer Hardware
Evaluating computer hardware is the shared responsibility of management, users, and systems an-
alysts. Although vendors will be supplying details about their particular offerings, analysts need
to oversee the evaluation process personally because they will have the best interests of the busi-
ness at heart. In addition, systems analysts may have to educate users and management about the
general advantages and disadvantages of hardware before they can capably evaluate it.
Based on the current inventory of computer equipment and adequate estimates of current and
forecasted workloads, the next step in the process is to consider the kinds of equipment available that
Compare performance ofdistribution warehousesby running the summaryprogram.
Computer programs arerun when needed; processingis done from the workstation.
Updates occur immediately;processing is done online.
Distribution manager Distribution managerDaily:
Enter shipments on Excel spreadsheet; verify accuracyof spreadsheet manually; and
media.
then write files to backup
Monthly:
Run program that
summarizes daily recordsand prints report; get report and make evaluations.
Daily:
Enter shipments on theWeb-based system using
automatically backed up
drop-down boxes. Data are
to remote location.Monthly:
Compare warehouses onlineusing the performancedashboard; print only ifneeded.
Daily: 20 minutes
Daily: 10 minutesMonthly: 30 minutes Monthly: 10 minutesDaily: 20 minutes
Daily: 10 minutesMonthly: 30 minutes Monthly: 10 minutes
Task
Method
Personnel
When and how
Human time
requirements
Computer time
requirements
Existing System Proposed System
Compare performance ofdistribution warehouseson the Web-based
dashboard.
FIGURE 3.5
Comparisons of workloads
between existing and proposed
systems.
66 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
appear to meet projected needs. Information from vendors on possible systems and system config-
urations becomes more pertinent at this stage and should be reviewed with management and users.
In addition, workloads can be simulated and run on different systems, including those already
used in the organization. This process is referred to as benchmarking.
Criteria that the systems analysts and users should use to evaluate performance of different
systems hardware include the following:
1. The time required for average transactions (including how long it takes to input data and
how long it takes to receive output).
2. The total volume capacity of the system (how much can be processed at the same time
before a problem arises).
3. The idle time of the CPU or network.
4. The size of the memory provided.
Some criteria will be shown in formal demonstrations; some cannot be simulated and must
be gleaned from manufacturers’ specifications. It is important to be clear about the required and
desired functions before getting too wrapped up in vendors’ claims during demonstrations.
Once functional requirements are known and the current products available are compre-
hended and compared with what already exists in the organization, decisions are made by the sys-
tems analysts in conjunction with users and management about whether obtaining new hardware
is necessary. Options can be thought of as existing on a continuum from using only equipment al-
ready available in the business all the way to obtaining entirely new equipment. In between are
options to make minor or major modifications to the existing computer system.
COMPUTER SIZE AND USE. The rapid advance of technology dictates that the systems analyst
research types of computers available at the particular time that the systems proposal is being
written. Computer sizes range all the way from miniature mobile phones to room-sized
supercomputers. Each has different attributes that should be considered when deciding how to
implement a computer system.
Acquisition of Computer Equipment
The three main options for acquisition of computer hardware are buying, leasing, or renting it.
There are advantages and disadvantages that ought to be weighed for each of the decisions, as
shown in Figure 3.6. Some of the more influential factors to consider in deciding which option is
best for a particular installation include initial versus long-term costs, whether the business can
afford to tie up capital in computer equipment, and whether the business desires full control of
and responsibility for the computer equipment.
Advantages Disadvantages
• Cheaper than leasing or
renting over the long run
• Ability to change system
• Provides tax advantages of
accelerated depreciation
• Full control
• No capital is tied up
• No financing is required
• Easy to change systems
• Maintenance and insurance
are usually included
• Initial cost is high
• Risk of obsolescence
• Risk of being stuck
if choice was wrong
• Full responsibility
• Company doesn’t own
the computer
• Cost is very high because
vendor assumes the risk
(most expensive option)
Renting
Buying
Leasing • No capital is tied up
• No financing is required
• Leases are lower than
rental payments
• Company doesn’t own the
system when lease expires
• Usually a heavy penalty for
terminating the lease
• Leases are more expensive
than buying
FIGURE 3.6
Comparing the advantages and
disadvantages of buying, leasing,
and renting computer equipment.
CHAPTER 3 • PROJECT MANAGEMENT 67
Buying implies that the business itself will own the equipment. One of the main determinants
of whether to buy is the projected life of the system. If the system will be used longer than four
to five years (with all other factors held constant), the decision is usually made to buy. Notice in
the example in Figure 3.7 that the cost of purchase after three years is lower than that of leasing
or renting. As systems become smaller, more powerful, and less expensive, and as distributed sys-
tems become more popular, more businesses are deciding to purchase equipment.
Leasing, rather than purchasing, computer hardware is another possibility. Leasing equip-
ment from the vendor or a third-party leasing company is more practical when the projected life
of the system is less than four years. In addition, if significant change in technology is imminent,
leasing is a better choice. Leasing also allows the business to put its money elsewhere, where it
can be working for the company rather than be tied up in capital equipment. Over a long period,
however, leasing is not an economical way to acquire computer equipment.
Renting computer hardware is the third main option for computer acquisition. One of the
main advantages of renting is that none of the company’s capital is tied up, and hence no financ-
ing is required. Also, renting computer hardware makes it easier to change system hardware. Fi-
nally, maintenance and insurance are usually included in rental agreements. Because of the high
costs involved and the fact that the company will not own the rented equipment, however, rent-
ing should be contemplated only as a short-term move to handle nonrecurring or limited com-
puter needs or technologically volatile times.
EVALUATION OF VENDOR SUPPORT FOR COMPUTER HARDWARE. Several key areas ought to be
evaluated when weighing the support services available to businesses from vendors. Most
vendors offer testing of hardware on delivery and a 90-day warranty covering any factory defects,
but you must ascertain what else the vendor has to offer. Vendors of comparable quality frequently
distinguish themselves from others by the range of support services they offer.
A list of key criteria that ought to be checked when evaluating vendor support is provided in
Figure 3.8. Most of the extra vendor support services listed there are negotiated separately from
hardware lease or purchase contracts.
Support services include routine and preventive maintenance of hardware, specified re-
sponse time (within six hours, next working day, etc.) in case of emergency equipment break-
downs, loan of equipment in the event that hardware must be permanently replaced or off-site
repair is required, and in-house training or off-site group seminars for users. Peruse the support
services documents accompanying the purchase or lease of equipment and remember to involve
appropriate legal staff before signing contracts for equipment or services.
Unfortunately, evaluating computer hardware is not as straightforward as simply comparing
costs and choosing the least expensive option. Some other eventualities commonly brought up by
Monthly lease× 36 monthsSubtotalInitial payment
$ 150
5,400
500
Lease
$5,900
Total cost over 3 years
Purchase price
Scrap value
$6,000
– 500
Buy
$5,500
Total cost over 3 years
Monthly rental
× 36 months
Total cost over 3 years
$ 170
$6,120
Rental
FIGURE 3.7
Comparison of alternatives for
computer acquisition.
68 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
users and management include (1) the possibility of adding on to the system if the need comes up
later; (2) the possibility of interfacing with equipment from other vendors if the system needs to
grow; (3) the benefits of buying more memory than is projected as necessary, with the expectation
that business will eventually “grow into it”; and (4) the corporate stability of the vendor.
Competition among vendors has made the idea of producing hardware that is compatible
with competitors’ hardware important for vendors’ survival. Before becoming convinced that
buying cheaper compatibles is the way to endow your system with add-on capability, however,
do enough research to feel confident that the original vendor is a stable corporate entity.
Software Evaluation
Analysts and organizations are increasingly faced with a make, buy, or outsource decision when
assessing software for information systems projects, particularly when contemplating upgrades
to existing or legacy systems.
You have seen the decisions that analysts make when deciding about renting, buying, or leas-
ing hardware. Some of the decision making surrounding purchase of commercial off-the-shelf
(COTS) software, “rental” of the software from an application service provider (ASP), or creation
of custom software for the project is analogous to the hardware decision process.
It should be noted that regardless of whether you develop software or purchase a COTS prod-
uct for a particular project, it is imperative to complete a human information requirements analy-
sis of the users and the systems they use first (as discussed in preceding chapters). As an analyst,
part of the expertise you are developing is to make sound judgments regarding developing soft-
ware versus the purchase of COTS software for new and existing systems. The following sections
discuss when to create your own software, when to purchase COTS packages, and when to use
an ASP. Figure 3.9 summarizes the advantages and disadvantages of each of these options.
WHEN TO CREATE CUSTOM SOFTWARE. There are several situations that call for the creation of
original software or software components. The most likely instance is when COTS software does
not exist or cannot be identified for the desired application. Alternatively, the software may exist
but it is unaffordable or cannot easily be purchased or licensed.
Original software should be created when the organization is attempting to gain a competi-
tive advantage through the leveraged use of information systems. This is often the case when an
organization is creating ecommerce or other innovative applications where none existed. It is also
possible that the organization is a “first mover” in the use of a particular technology or in its par-
ticular industry. Organizations that have highly specialized requirements or exist in niche indus-
tries can also benefit from original software.
The advantages of creating your own software include being able to respond to specialized user
and business needs, gaining a competitive advantage by creating innovative software, having in-
house staff available to maintain the software, and the pride of owning something you have created.
The drawbacks of developing your own software include the potential for a significantly
higher initial cost compared to purchasing COTS software or contracting with an ASP, the neces-
Full line of hardware
Quality products
Warranty
Complete software needs
Custom programming
Warranty
Commitment to schedule
In-house training
Technical assistance
Routine maintenance procedures
Specified response time in emergencies
Equipment loan while repair is being done
Specifics Vendors Typically Offer
Hardware Support
Software Support
Installation and Training
Maintenance
Vendor Services
FIGURE 3.8
Guidelines for vendor selection.
CHAPTER 3 • PROJECT MANAGEMENT 69
sity of hiring or working with a development team, and the fact that you are responsible for the
ongoing maintenance because you were the software’s creator.
WHEN TO BUY COTS SOFTWARE. Commercial off-the-shelf software includes such products as the
Microsoft Office suite, which includes Word for word processing, Excel for spreadsheets, Access
for building databases, and other applications. Other types of COTS software are for organizational-
level systems rather than office or personal use. Some authors include popular (but costly) ERP
packages such as Oracle and SAP in their examples of COTS software. These packages differ
radically in the amount of customization, support, and maintenance required compared to Microsoft
Office. COTS software can also refer to software components or objects (also called building
blocks) that can be purchased to provide a particular needed functionality in a system.
Consider using COTS software when you can easily integrate the applications or packages into
existing or planned systems, and when you have identified no necessity to immediately or continu-
ously change or customize them for users. Your forecasts should demonstrate that the organization
you are designing the system for is unlikely to undergo major changes after the proposed purchase
of COTS software, such as a dramatic increase in customers or large physical expansions.
There are some advantages to purchasing COTS software that you should keep in mind as
you weigh alternatives. One advantage is that these products have been refined through the
process of commercial use and distribution, so that often there are additional functionalities of-
fered. Another advantage is that packaged software is typically extensively tested, and thus ex-
tremely reliable.
Increased functionality is often offered with COTS software, because a commercial product
is likely to have sister products, add-on features, and upgrades that enhance its attractiveness. Ad-
ditionally, analysts often find that the initial cost of COTS software is lower than the cost for ei-
ther in-house software development or the use of an ASP.
Another advantage of purchasing COTS packages includes their use by many other compa-
nies, so analysts are not experimenting on their clients with one-of-a-kind software applications.
Advantages Disadvantages
• Specific response to
specialized business needs
• Innovation may give firm a
competitive advantage
• In-house staff available to
maintain software
• Pride of ownership
• May be significantly higher
initial cost compared to COTS
software or ASP
• Necessity of hiring or working
with a development team
• Ongoing maintenance
Creating Custom
Software
• Organizations that do not
specialize in information
systems can focus on what
they do best (their strategic
mission)
• There is no need to hire,
train, or retain a large IT staff
• There is no expenditure of
employee time on
nonessential IT tasks
• Loss of control of data, systems,
IT employees, and schedules
• Concern over the financial
viability and long-run stability
of the ASP
• Security, confidentiality, and
privacy concerns
• Loss of potential strategic
corporate advantage regarding
innovativeness of applications
Using an ASP
• Refined in the commercial
world
• Increased reliability
• Increased functionality
• Often lower initial cost
• Already in use by other
firms
• Help and training comes
with software
• Programming focused; not
business focused
• Must live with the existing
features
• Limited customization
• Uncertain financial future
of vendor
• Less ownership and
commitment
Purchasing COTS
Packages
FIGURE 3.9
Comparing the advantages and
disadvantages of creating custom
software, purchasing COTS
packages, and outsourcing to
an ASP.
70 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
Lastly, COTS software boasts an advantage in the help and training that accompanies the pur-
chase of the packaged software.
One example of the use of COTS software is from a theatre company in the nonprofit sector,
in which organizations (particularly in the performing arts) tend to lag behind their for-profit
counterparts in adoption of information communication technologies (ICTs). The theatre com-
pany was predictably slow to move to the Web. When they desired to create ecommerce applica-
tions, they were put in a position of having to hire outside designers to create ecommerce
applications for them. In light of the expense and lack of in-house expertise, many nonprofit or-
ganizations simply did not move the business portion of their organizations to the Web, waiting
instead for COTS packages, such as PC-based, box-office software, or ASPs such as online tick-
eting agencies with automation already in place, to make these services available to patrons. In-
house software development was out of the question for most of these groups, who typically have
small or nonexistent IT staffs and budgets, and minimal internal IT expertise.
There is a downside to the use of COTS software. Because it is not meant to be fully cus-
tomizable, the theatre company lost its ability to change the software to include key features in
its donor database that users were reliant on. COTS software may also include errors that could
expose an organization to liability issues.
There are other disadvantages to consider with the purchase of COTS software, including the
fact that packages are programmed, rather than being focused on human users working in a busi-
ness. Additionally, users must live with whatever features exist in the software, whether they are
appropriate or not. A disadvantage that grows out of this is the limited customizability of most
packaged software. Other disadvantages to purchasing COTS software include the necessity of
investigating the financial stability of the software vendor, and the diminished sense of ownership
and commitment that is inevitable when the software is considered a product rather than a process.
To achieve some perspective on systems being developed, you should recognize that over
half of the projects are built from scratch (two-thirds using traditional methods like SDLC and
prototyping and one-third using agile or object-oriented technologies). Most of these are devel-
oped using an internal systems analysis team. Programmers may be in-house or outsourced.
Less than half of all projects are developed from existing applications or components. The
great majority are modified, some extensively. Less than 5 percent of software is off-the-shelf
software that requires no modifications at all.
C O N S U L T I N G O P P O R T U N I T Y 3 . 2
Veni, Vidi, Vendi, or, I Came, I Saw, I Sold
“It’s really some choice. I mean, no single package seems to have
everything we want. Some of them come darn close, though,” says
Roman, an advertising executive for Empire Magazine with whom
you have been working on a systems project. Recently, the two of
you have decided that packaged software would probably suit the
advertising department’s needs and stem its general decline.
“The last guy’s demo we saw, you know, the one who worked
for Data Coliseum, really had a well-rounded pitch. And I like their
brochure. Full-color printing, on card stock. Classic,” Roman asserts.
“And what about those people from Vesta Systems? They’re
really fired up. And their package was easy to use with a minimum
of ceremony. Besides, they said they would train all 12 of us, on-
site, at no charge. But look at their advertising. They just take things
off their printers.”
Roman fiddles in his chair as he continues his ad hoc review
of software and software vendors. “That one package from Mars,
Inc., really sold me all on its own, though. I mean, it had a built-in
calendar. And I like the way the menus for the screen displays could
all be chosen by Roman numerals. It was easy to follow. And the
vendor isn’t going to be hard to move on price. I think they’re al-
ready in a price war.”
“Do you want to know my favorite, though?” Roman asks
archly. “It’s the one put out by Jupiter, Unlimited. I mean, it has
everything, doesn’t it? It costs a little extra coin, but it does what we
need it to do, and the documentation is heavenly. They don’t do any
training, of course. They think they’re above it.”
You are already plotting that to answer Roman’s burning ques-
tions by your March 15 deadline, you need to evaluate the software
as well as the vendors, systematically, and then render a decision.
Evaluate each vendor and package based on what Roman has said
so far (assume you can trust his opinions). What are Roman’s ap-
parent biases when evaluating software and vendors? What further
information do you need about each company and its software
before making a selection? Set up a table to evaluate each vendor.
Answer each question in a separate paragraph.
CHAPTER 3 • PROJECT MANAGEMENT 71
WHEN TO OUTSOURCE SOFTWARE SERVICES TO AN APPLICATION SERVICE PROVIDER.
Organizations may realize some benefits from taking an entirely different approach to procuring
software. This third option is to outsource some of the organization’s software needs to an
application service provider that specializes in IT applications.
There are specific benefits to outsourcing applications to an application service provider
(ASP). For example, organizations that desire to retain their strategic focus and do what they’re
best at may want to outsource the production of information systems applications. Additionally,
outsourcing one’s software needs means that the organization doing the outsourcing may be able
to sidestep the need to hire, train, and retain a large IT staff. This can result in significant savings.
When an organization uses an ASP, there is little or no expenditure of valuable employee time on
nonessential IT tasks (these are handled professionally by the ASP).
Hiring an ASP should not be considered a magic formula for addressing software require-
ments. There are drawbacks to the use of an ASP that must be seriously considered. One disad-
vantage is a general loss of control over corporate data, information systems, IT employees, and
even processing and project schedules. Some companies believe that the heart of their business is
their information, so even the thought of relinquishing control over it is distressing. Another
disadvantage is concern over the financial viability of any ASP that is chosen. There might also
be concerns about the security of the organization’s data and records, along with concern about
confidentiality of data and client privacy. Finally, when choosing an ASP, there is a potential loss
of strategic corporate advantage that might have been gained through the company’s own deploy-
ment of innovative applications created by their employees.
EVALUATION OF VENDOR SUPPORT FOR SOFTWARE AND ASPS. Whether you purchase a COTS
package or contract for ASP services, you will be dealing with vendors who may have their own
best interests at heart. You must be willing to evaluate software with users and not be unduly
influenced by vendors’ sales pitches. Specifically, there are six main categories on which to grade
software, as shown in Figure 3.10: performance effectiveness, performance efficiency, ease of
use, flexibility, quality of documentation, and manufacturer support.
Able to perform all required tasks
Able to perform all tasks desired
Well-designed display screens
Adequate capacity
Fast response time
Efficient input
Efficient output
Efficient storage of data
Efficient backup
Satisfactory user interface
Help menus available
“Read Me” files for last-minute changes
Flexible interface
Adequate feedback
Good error recovery
Options for input
Options for output
Usable with other software
Good organization
Adequate online tutorial
Web site with FAQ
Technical support hotline
Newsletter/email
Web site with downloadable product updates
Software Requirements Specific Software Features
Performance Efficiency
Performance Effectiveness
Ease of use
Flexibility
Quality of Documentation
Manufacturer Support
FIGURE 3.10
Guidelines for evaluating
software.
72 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
Evaluate packaged software based on a demonstration with test data from the business con-
sidering it and an examination of accompanying documentation. Vendors’ descriptions alone will
not suffice. Vendors typically certify that software is working when it leaves their supply house,
but they will not guarantee that it will be error-free in every instance or that it will not crash when
incorrect actions are taken by users. Obviously, they will not guarantee their packaged software
if used in conjunction with faulty hardware.
IDENTIFYING, FORECASTING, AND COMPARING
COSTS AND BENEFITS
Costs and benefits of the proposed computer system must always be considered together, because
they are interrelated and often interdependent. Although the systems analyst is trying to propose
a system that fulfills various information requirements, decisions to continue with the proposed
system will be based on a cost-benefit analysis, not on information requirements. In many ways,
benefits are measured by costs, as becomes apparent in the next section.
Forecasting
Systems analysts are required to predict certain key variables before the proposal is submitted to
the client. To some degree, a systems analyst will rely on a what-if analysis, such as, “What if la-
bor costs rise only 5 percent per year for the next three years, rather than 10 percent?” The sys-
tems analyst should realize, however, that he or she cannot rely on what-if analysis for everything
if the proposal is to be credible, meaningful, and valuable.
The systems analyst has many forecasting models available. The main condition for choos-
ing a model is the availability of historical data. If they are unavailable, the analyst must turn to
one of the judgment methods: estimates from the sales force, surveys to estimate customer de-
mand, Delphi studies (a consensus forecast developed independently by a group of experts
through a series of iterations), creating scenarios, or drawing historical analogies.
If historical data are available, the next differentiation between classes of techniques involves
whether the forecast is conditional or unconditional. Conditional implies that there is an association
among variables in the model or that such a causal relationship exists. Common methods in this
group include correlation, regression, leading indicators, econometrics, and input/output models.
Unconditional forecasting means the analyst isn’t required to find or identify any causal
relationships. Consequently, systems analysts find that these methods are low-cost, easy-to-
implement alternatives. Included in this group are graphical judgment, moving averages, and
analysis of time-series data. Because these methods are simple, reliable, and cost effective, the
remainder of the section focuses on them.
ESTIMATION OF TRENDS. Trends can be estimated in a number of different ways. One way to
estimate trends is to use a moving average. This method is useful because some seasonal, cyclical,
or random patterns may be smoothed, leaving the trend pattern. The principle behind moving
averages is to calculate the arithmetic mean of data from a fixed number of periods; a three-month
moving average is simply the average of the last three months. For example, the average sales for
January, February, and March is used to predict the sales for April. Then the average sales for
February, March, and April are used to predict the sales for May, and so on.
When the results are graphed, it is easily noticeable that the widely fluctuating data are
smoothed. The moving average method is useful for its smoothing ability, but at the same time it has
many disadvantages. Moving averages are more strongly affected by extreme values than by
using graphical judgment or estimating using other methods such as least squares. The analyst should
learn forecasting well, as it often provides information valuable in justifying the entire project.
Identifying Benefits and Costs
Benefits and costs can be thought of as either tangible or intangible. Both tangible and intangible
benefits and costs must be taken into account when systems are considered.
TANGIBLE BENEFITS. Tangible benefits are advantages measurable in dollars that accrue to the
organization through the use of the information system. Examples of tangible benefits are an
increase in the speed of processing, access to otherwise inaccessible information, access to
information on a more timely basis than was possible before, the advantage of the computer’s
CHAPTER 3 • PROJECT MANAGEMENT 73
C O N S U L T I N G O P P O R T U N I T Y 3 . 3
We’re Off to See the Wizards
Elphaba I. Menzel and Glinda K. Chenoweth are the owners of
Emerald City Beautyscapes, a commercial landscaping company.
They are trying to decide whether to write their own software, per-
haps using Microsoft Access as a basis; adopt a COTS software
package such as QuickBooks Pro; or hire a service called Lawn
Wizards, Inc., to perform all of their bookkeeping functions.
Elphaba turned to Glinda and asked, “Is it possible for us to
create a system of our own?”
Glinda replied, “I suppose we could, but it would take forever.
We would need to define all our fields, our queries, and our reports.
We would need to know who hasn’t paid us yet, and how long it has
been since we last billed them.”
“Yes,” says Elphaba, “and we would also have to create prod-
uct descriptions, service descriptions, and codes for everything we
sell and provide.”
“If that was all we needed, we could probably do it,” says
Glinda. “But we also need to include a scheduling system. We need
to know when we can provide the services to our customers and
what to do if we fall behind schedule. Maybe it just isn’t worth it.
“Still,” reflects Glinda, “my mother used to say ‘There’s no
place like home.’ Maybe there’s no software like home grown.”
“You see both sides of everything,” remarks Elphaba. “But the
path you want to take is too long and risky. We need a software
package that is ready for us to use now. I hear that there are products
they call commercial off-the-shelf software that we can buy and
adapt to our lawn service business. I’ll investigate.” So, Elphaba sets
out to look for software that may be suitable.
“I’ve found something,” cries Elphaba. “I found this software
called QuickBooks Pro at www.quickbooks.com and it looks like we
can afford it. There are numerous versions of the software already—
one for accounting, one for construction, one for health services.
Maybe we can find a package that suits us. If not, it looks like we can
customize the generic version of QuickBooks Pro to fit our needs.
“Our system could grow, too. QuickBooks Pro is readily
scalable. We can add customers, suppliers, or products easily. I
just wanted to plant the idea of buying a ready-made package on
you.”
“That’s interesting,” says Glinda, “but I’ve been doing my
own research. Some of our competitors have told me they let a com-
pany do all the work for them. The company is called Lawn Wiz-
ards. They do landscaping, but they also maintain accounts
receivable and scheduling packages.”
So off they went to see the Wizards.
Joel Green, the owner and creator of Lawn Wizards, is proud
of his software. “I spent a great deal of time working with my sup-
pliers, that is, nurseries, in the area, and we have developed a cod-
ing system for everything,” he brags. “All the trees, sizes of trees,
shrubs, flowers, mulch, and even lawn care tools have numbers.
“I started with a small firm, but when customers realized I paid
attention to every little detail, my business blossomed.” He adds,
“My suppliers love my system because it cuts down on confusion.
“I noticed that my competitors were working with the same
suppliers, but were getting less preferential treatment because they
couldn’t communicate about product very effectively. So I decided
I would offer my software for hire. I would make money by renting
out my software and demand even greater respect from my suppli-
ers. My end user license agreement states that I own the software,
product codes, and data generated by the system.
“Using my unique Wizards software, I can customize the pack-
age a bit for the customer, but essentially all the lawn services in the
state will be using my database, codes, and B2B features. I main-
tain my software. If you could see the software code, it would look
just like a manicured lawn.”
Now Glinda and Elphaba are even more confused than before.
They have three distinct options: to create a package on their own,
buy commercial off-the-shelf software such as QuickBooks Pro, or
outsource their needs to Lawn Wizards. Help them learn the true se-
cret of (software) happiness by helping them articulate the pros and
cons of each of their alternatives. What would you recommend? In
two paragraphs, write a recommendation that grows out of your
consideration of their specific business situation.
superior calculating power, and decreases in the amount of employee time needed to complete
specific tasks. There are still others. Although measurement is not always easy, tangible benefits
can actually be measured in terms of dollars, resources, or time saved.
INTANGIBLE BENEFITS. Some benefits that accrue to the organization from the use of the
information system are difficult to measure but are important nonetheless. They are known as
intangible benefits.
Intangible benefits include improving the decision-making process, enhancing accuracy, be-
coming more competitive in customer service, maintaining a good business image, and increas-
ing job satisfaction for employees by eliminating tedious tasks. As you can judge from the list
given, intangible benefits are extremely important and can have far-reaching implications for the
business as it relates to people both outside and within the organization.
Although intangible benefits of an information system are important factors that must be con-
sidered when deciding whether to proceed with a system, a system built solely for its intangible
www.quickbooks.com
74 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
benefits will not be successful. You must discuss both tangible and intangible benefits in your
proposal, because presenting both will allow decision makers in the business to make a well-
informed decision about the proposed system.
TANGIBLE COSTS. The concepts of tangible and intangible costs present a conceptual parallel to
the tangible and intangible benefits discussed already. Tangible costs are those that can be
accurately projected by the systems analyst and the business’s accounting personnel.
Included in tangible costs are the cost of equipment such as computers and terminals, the cost
of resources, the cost of systems analysts’ time, the cost of programmers’ time, and other employ-
ees’ salaries. These costs are usually well established or can be discovered quite easily, and are
the costs that will require a cash outlay of the business.
INTANGIBLE COSTS. Intangible costs are difficult to estimate and may not be known. They include
losing a competitive edge, losing the reputation for being first with an innovation or the leader in
a field, declining company image due to increased customer dissatisfaction, and ineffective
decision making due to untimely or inaccessible information. As you can imagine, it is next to
impossible to project a dollar amount for intangible costs accurately. To aid decision makers who
want to weigh the proposed system and all its implications, you must include intangible costs
even though they are not quantifiable.
Comparing Costs and Benefits
There are many well-known techniques for comparing the costs and benefits of the proposed sys-
tem. They include break-even analysis, payback, cash-flow analysis, and present value analysis.
All these techniques provide straightforward ways of yielding information to decision makers
about the worthiness of the proposed system.
BREAK-EVEN ANALYSIS. By comparing costs alone, the systems analyst can use break-even analysis
to determine the break-even capacity of the proposed information system. The point at which the
total costs of the current system and the proposed system intersect represents the break-even point,
the point where it becomes profitable for the business to get the new information system.
Total costs include the costs that recur during operation of the system plus the developmen-
tal costs that occur only once (one-time costs of installing a new system), that is, the tangible costs
that were just discussed. Figure 3.11 is an example of a break-even analysis on a small store that
maintains inventory using a manual system. As volume rises, the costs of the manual system rise
at an increasing rate. A new computer system would cost a substantial sum up front, but the in-
Cost
($) Proposed
System
Break-Even
Point
Current
System
10,000
20,000
30,000
40,000
50,000
60,000
70,000
0
0 200 400 600 800 1,000 1,200
Units Sold
Cost of proposed
system
Cost of current
system
Annie’s EquipmentFIGURE 3.11
Break-even analysis for the
proposed inventory system.
CHAPTER 3 • PROJECT MANAGEMENT 75
cremental costs for higher volume would be rather small. The graph shows that the computer sys-
tem would be cost effective if the business sold about 600 units per week.
Break-even analysis is useful when a business is growing and volume is a key variable in
costs. One disadvantage of break-even analysis is that benefits are assumed to remain the same,
regardless of which system is in place. From our study of tangible and intangible benefits, we
know that is clearly not the case.
Break-even analysis can also determine how long it will take for the benefits of the system
to pay back the costs of developing it. Figure 3.12 illustrates a system with a payback period of
three and a half years.
CASH-FLOW ANALYSIS. Cash-flow analysis examines the direction, size, and pattern of cash flow
that is associated with the proposed information system. If you are proposing the replacement of
an old information system with a new one and if the new information system will not be
generating any additional cash for the business, only cash outlays are associated with the project.
If that is the case, the new system cannot be justified on the basis of new revenues generated and
must be examined closely for other tangible benefits if it is to be pursued further.
Figure 3.13 shows a cash-flow analysis for a small company that is providing a mailing ser-
vice to other small companies in the city. Revenue projections are that only $5,000 will be gen-
erated in the first quarter, but after the second quarter, revenue will grow at a steady rate. Costs
will be large in the first two quarters and then level off. Cash-flow analysis is used to determine
when a company will begin to make a profit (in this case, it is in the third quarter, with a cash flow
of $7,590) and when it will be “out of the red,” that is, when revenue has made up for the initial
investment (in the first quarter of the second year, when accumulated cash flow changes from a
negative amount to a positive $10,720).
The proposed system should have increased revenues along with cash outlays. Then the size
of the cash flow must be analyzed along with the patterns of cash flow associated with the pur-
chase of the new system. You must ask when cash outlays and revenues will occur, not only for
the initial purchase but also over the life of the information system.
PRESENT VALUE ANALYSIS. Present value analysis helps the systems analyst to present to
business decision makers the time value of the investment in the information system as well as
the cash flow (as discussed in the previous section). Present value is a way to assess all the
economic outlays and revenues of the information system over its economic life, and to compare
costs today with future costs and today’s benefits with future benefits.
In Figure 3.14, system costs total $272,000 over six years and benefits total $280,700. There-
fore, we might conclude that benefits outweigh the costs. Benefits only started to surpass costs
after the fourth year, however, and dollars in the sixth year will not be equivalent to dollars in the
first year.
Cost
($)
Costs
Benefits
10,000
20,000
30,000
40,000
50,000
60,000
70,000
0
0
1
2
3
4
5
6
Year Cost
($)
Cumulative
Costs
($)
Cumulative
Benefits
($)
Benefits
($)
30,000
1,000
2,000
2,000
3,000
4,000
4,000
30,000
31,000
33,000
35,000
38,000
42,000
46,000
0
12,000
12,000
8,000
8,000
10,000
15,000
0
12,000
24,000
32,000
40,000
50,000
65,000
0 1 2 3 4 5 6
Year
Cumulative benefits from
proposed system
Cumulative costs of
proposed system
Payback
Period
FIGURE 3.12
Break-even analysis showing a
payback period of three and a half
years.
76 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
Revenue
Costs
Year 1
Quarter 2 Quarter 3 Quarter 4Quarter 1
Year 2
Quarter 1
$5,000 $20,000 $24,960 $31,270 $39,020
Software
development
Personnel
Training
Equipment
lease
Supplies
Maintenance
10,000
8,000
3,000
4,000
1,000
0
26,000
5,000
8,400
6,000
4,000
2,000
2,000
27,400
8,800
4,000
2,370
2,200
17,370
9,260
4,000
2,990
2,420
18,670
9,700
4,000
3,730
2,660
20,090
Cash Flow
Cumulative
Cash Flow
–21,000
–21,000
–7,400
–28,400
7,590
–20,810 –8,210
12,600
10,720
18,930
Total Costs
FIGURE 3.13
Cash-flow analysis for the
computerized mail-addressing
system.
1 2 3 4 5 6 Total
Year
$40,000
$25,000
42,000
31,200
44,100
39,000
46,300
48,700
48,600
60,800
Costs
Benefits
51,000
76,000
272,000
280,700
FIGURE 3.14
Without considering present value,
the benefits appear to outweigh
the costs.
1 2 3 4 5 6 Total
Year
$40,000
.89
35,600
$25,000
.89
22,250
42,000
.80
33,600
31,200
.80
24,960
44,100
.71
31,311
39,000
.71
27,690
46,300
.64
29,632
48,700
.64
31,168
48,600
.57
27,702
60,800
.57
34,656
51,000
.51
26,010
76,000
.51
38,760 179,484
183,855
Present Value of Benefits
Multiplier
Present Value of Costs
Multiplier
Costs
Benefits
FIGURE 3.15
Taking into account present value,
the conclusion is that the costs are
greater than the benefits. The
discount rate, i, is assumed to be
.12 in calculating the multipliers in
this table.
For instance, a dollar investment at 7 percent today will be worth $1.07 at the end of the year
and will double in approximately 10 years. The present value, therefore, is the cost or benefit
measured in today’s dollars and depends on the cost of money. The cost of money is the oppor-
tunity cost, or the rate that could be obtained if the money invested in the proposed system were
invested in another (relatively safe) project.
The present value of $1.00 at a discount rate of i is calculated by determining the factor
where n is the number of periods. Then the factor is multiplied by the dollar amount, yielding the
present value as shown in Figure 3.15. In this example, the cost of money—the discount rate—is
assumed to be .12 (12 percent) for the entire planning horizon. Multipliers are calculated for each
period: n � 1, n � 2, …, n � 6. Present values of both costs and benefits are then calculated us-
ing these multipliers. When that step is done, the total benefits (measured in today’s dollars) are
1
11 + i 2 n
CHAPTER 3 • PROJECT MANAGEMENT 77
$179,484, and thus less than the costs (also measured in today’s dollars). The conclusion to be
drawn is that the proposed system is not worthwhile if present value is considered.
Although this example, which used present value factors, is useful in explaining the concept,
all electronic spreadsheets have a built-in present value function. The analyst can directly com-
pute present value using this feature.
GUIDELINES FOR ANALYSIS. The use of the methods discussed in the preceding subsections
depends on the methods employed and accepted in the organization itself. For general guidelines,
however, it is safe to say the following:
1. Use break-even analysis if the project needs to be justified in terms of cost, not benefits, or
if benefits do not substantially improve with the proposed system.
2. Use payback when the improved tangible benefits form a convincing argument for the
proposed system.
3. Use cash-flow analysis when the project is expensive relative to the size of the company or
when the business would be significantly affected by a large drain (even if temporary) on
funds.
4. Use present value analysis when the payback period is long or when the cost of borrowing
money is high.
Whichever method is chosen, it is important to remember that cost-benefit analysis should be ap-
proached systematically, in a way that can be explained and justified to managers, who will even-
tually decide whether to commit resources to the systems project. Next, we turn to the importance
of comparing many systems alternatives.
ACTIVITY PLANNING AND CONTROL
Systems analysis and design involves many different types of activities that together make up a
project. The systems analyst must manage the project carefully if the project is to be successful.
Project management involves the general tasks of planning and control.
Planning includes all the activities required to select a systems analysis team, assign mem-
bers of the team to appropriate projects, estimate the time required to complete each task, and
schedule the project so that tasks are completed in a timely fashion. Control means using feed-
back to monitor the project, including comparing the plan for the project with its actual evolution.
In addition, control means taking appropriate action to expedite or reschedule activities to finish
on time while motivating team members to complete the job properly.
Estimating Time Required
The systems analyst’s first decision is to determine the amount of detail that goes into defining
activities. The lowest level of detail is the SDLC itself, whereas the highest extreme is to include
every detailed step. The optimal answer to planning and scheduling lies somewhere in between.
A structured approach is useful here. In Figure 3.16 the systems analyst beginning a project
has broken the process into three major phases: analysis, design, and implementation. Then the
Phase Activity
Analysis Data gathering
Data flow and decision analysis
Proposal preparation
Design Data entry design
Input design
Output design
Data organization
Implementation Implementation
Evaluation
Break apart
the major
activities into
smaller ones.
FIGURE 3.16
Beginning to plan a project by
breaking it into three major
activities.
78 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
analysis phase is further broken down into data gathering, data flow and decision analysis, and
proposal preparation. Design is broken down into data entry design, input and output design, and
data organization. The implementation phase is divided into implementation and evaluation.
In subsequent steps the systems analyst needs to consider each of these tasks and break them
down further so that planning and scheduling can take place. Figure 3.17 shows how the analy-
C O N S U L T I N G O P P O R T U N I T Y 3 . 4
Food for Thought
“ We could really make some changes. Shake up some people.
Let them know we’re with it. Technologically, I mean,” said Mal-
colm Warner, vice president for AllFine Foods, a wholesale dairy
products distributor. “That old system should be overhauled. I think
we should just tell the staff that it’s time to change.”
“Yes, but what would we actually be improving?” Kim Han,
assistant to the vice president, asks. “I mean, there aren’t any sub-
stantial problems with the system input or output that I can see.”
Malcolm snaps, “Kim, you’re purposely not seeing my point.
People out there see us as a stodgy firm. A new computer system
could help change that. Change the look of our invoices. Send jazz-
ier reports to the food store owners. Get some people excited about
us as leaders in wholesale food distributing and computers.”
“Well, from what I’ve seen over the years,” Kim replies evenly,
“a new system is very disruptive, even when the business really
needs it. People dislike change, and if the system is performing the
way it should, maybe there are other things we could do to update
our image that wouldn’t drive everyone nuts in the process. Besides,
you’re talking big bucks for a new gimmick.”
Malcolm says, “I don’t think just tossing it around here be-
tween the two of us is going to solve anything. Check on it and get
back to me. Wouldn’t it be wonderful?”
A week later Kim enters Malcolm’s office with several pages
of interview notes in hand. “I’ve talked with most of the people who
have extensive contact with the system. They’re happy, Malcolm.
And they’re not just talking through their hats. They know what
they’re doing.”
“I’m sure the managers would like to have a newer system than
the guys at Quality Foods,” Malcolm replies. “Did you talk to
them?”
Kim says, “Yes. They’re satisfied.”
“And how about the people in systems? Did they say the tech-
nology to update our system is out there?” Malcolm inquires insis-
tently.
“Yes. It can be done. That doesn’t mean it should be,” Kim
says firmly.
As the systems analyst for AllFine Foods, how would you as-
sess the feasibility of the systems project Malcolm is proposing?
Based on what Kim has said about the managers, users, and systems
people, what seems to be the operational feasibility of the proposed
project? What about the economic feasibility? What about the tech-
nological feasibility? Based on what Kim and Malcolm have dis-
cussed, would you recommend that a full-blown systems study be
done? Discuss your answer in a paragraph.
8
then estimate
time required.
Conduct interviews
Administer questionnaires
Read company reports
Introduce prototype
Observe reactions to prototype
Analyze data flow
Perform cost-benefit analysis
Prepare proposal
Present proposal
Data gathering
Data flow and decision analysis
Proposal preparation
3
4
4
5
3
3
2
2
Weeks
RequiredDetailed ActivityActivity
Break thesedown further,
FIGURE 3.17
Refining the planning and
scheduling of analysis activities by
adding detailed tasks and
establishing the time required to
complete the tasks.
CHAPTER 3 • PROJECT MANAGEMENT 79
sis phase is described in more detail. For example, data gathering is broken down into five activ-
ities, from conducting interviews to observing reactions to the prototype. This particular project
requires data flow analysis but not decision analysis, so the systems analyst has written in “ana-
lyze data flow” as the single step in the middle phase. Finally, proposal preparation is broken
down into three steps: perform cost-benefit analysis, prepare proposal, and present proposal.
The systems analyst, of course, has the option to break down steps further. For instance, the
analyst could specify each of the persons to be interviewed. The amount of detail necessary de-
pends on the project, but all critical steps need to appear in the plans.
Sometimes the most difficult part of project planning is the crucial step of estimating the
time it takes to complete each task or activity. When quizzed about reasons for lateness on a
particular project, project team members cited poor scheduling estimates that hampered the
success of projects from the outset. There is no substitute for experience in estimating time re-
quirements, and systems analysts who have had the opportunity of an apprenticeship are fortu-
nate in this regard.
Planners have attempted to reduce the inherent uncertainty in determining time estimates by
projecting most likely, pessimistic, and optimistic estimates and then using a weighted average
formula to determine the expected time an activity will take. This approach offers little more in
the way of confidence, however. Perhaps the best strategy for the systems analyst is to adhere to
a structured approach in identifying activities and describing these activities in sufficient detail.
In this manner, the systems analyst will at least be able to limit unpleasant surprises.
Using Gantt Charts for Project Scheduling
A Gantt chart is an easy way to schedule tasks. It is a chart on which bars represent each task or
activity. The length of each bar represents the relative length of the task.
Figure 3.18 is an example of a two-dimensional Gantt chart in which time is indicated on the
horizontal dimension and a description of activities makes up the vertical dimension. In this ex-
ample the Gantt chart shows the analysis or information gathering phase of the project. Notice on
the Gantt chart that conducting interviews will take three weeks, administering the questionnaire
will take four weeks, and so on. These activities overlap part of the time. In the chart the special
symbol � signifies that it is week 9. The bars with color shading represent projects or parts of
projects that have been completed, telling us that the systems analyst is behind in introducing pro-
totypes but ahead in analyzing data flows. Action must be taken on introducing prototypes soon
so that other activities or even the project itself will not be delayed as a result.
The main advantage of the Gantt chart is its simplicity. The systems analyst will find not only
that this technique is easy to use but also that it lends itself to worthwhile communication with
end users. Another advantage of using a Gantt chart is that the bars representing activities or tasks
are drawn to scale; that is, the size of the bar indicates the relative length of time it will take to
complete each task.
Activity
Incomplete activity
Completed activity
Partially completed activity
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Conduct interviews
Administer questionnaires
Read company reports
Analyze data flows
Introduce prototype
Observe reactions
Perform cost-benefit
Prepare proposal
Present proposal
Weeks
Current Week
FIGURE 3.18
Using a two-dimensional Gantt
chart for planning activities that
can be accomplished in parallel.
80 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
Using PERT Diagrams
PERT is an acronym for Program Evaluation and Review Techniques. A program (a synonym for
a project) is represented by a network of nodes and arrows that are then evaluated to determine
the critical activities, improve the schedule if necessary, and review progress once the project is
undertaken. PERT was developed in the late 1950s for use in the U.S. Navy’s Polaris nuclear sub-
marine project. It reportedly saved the U.S. Navy two years’ development time.
PERT is useful when activities can be done in parallel rather than in sequence. The systems
analyst can benefit from PERT by applying it to systems projects on a smaller scale, especially
when some team members can be working on certain activities at the same time that fellow mem-
bers are working on other tasks.
Figure 3.19 compares a simple Gantt chart with a PERT diagram. The activities expressed as
bars in the Gantt chart are represented by arrows in the PERT diagram. The length of the arrows
has no direct relationship with the activity durations. Circles on the PERT diagram are called
events and can be identified by numbers, letters, or any other arbitrary form of designation. The
circular nodes are present to (1) recognize that an activity is completed and (2) indicate which ac-
tivities need to be completed before a new activity may be undertaken (precedence).
In reality activity C may not be started until activity A is completed. Precedence is not indi-
cated at all in the Gantt chart, so it is not possible to tell whether activity C is scheduled to start
on day 4 on purpose or by coincidence.
A project has a beginning, a middle, and an end; the beginning is event 10 and the end is event
50. To find the length of the project, each path from beginning to end is identified, and the length
of each path is calculated. In this example path 10–20–40–50 has a length of 15 days, whereas path
10–30–40–50 has a length of 11 days. Even though one person may be working on path
10–20–40–50 and another on path 10–30–40–50, the project is not a race. The project requires that
both sets of activities (or paths) be completed; consequently, the project takes 15 days to complete.
The longest path is referred to as the critical path. Although the critical path is determined by
calculating the longest path, it is defined as the path that will cause the whole project to fall be-
hind if even one day’s delay is encountered on it. Note that if you are delayed one day on path
10–20–40–50, the entire project will take longer, but if you are delayed one day on path
10–30–40–50, the entire project will not suffer. The leeway to fall behind somewhat on noncriti-
cal paths is called slack time.
Occasionally, PERT diagrams need pseudo-activities, referred to as dummy activities, to pre-
serve the logic of or clarify the diagram. Figure 3.20 shows two PERT diagrams with dummies.
Project 1 and project 2 are quite different, and the way the dummy is drawn makes the difference
A
B
C
D
E
2 4 6 8 10 12 14 16
A, 4 C, 5
B, 2 D, 3
E, 6
10
20
30
40 50
FIGURE 3.19
Gantt charts compared with PERT
diagrams for scheduling activities.
CHAPTER 3 • PROJECT MANAGEMENT 81
clear. In project 1 activity C can only be started if both A and B are finished, because all arrows com-
ing into a node must be completed before leaving the node. In project 2, however, activity C requires
only activity B’s completion and can therefore be under way while activity A is still taking place.
Project 1 takes 14 days to complete, whereas project 2 takes only 9 days. The dummy in proj-
ect 1 is necessary, of course, because it indicates a crucial precedence relationship. The dummy
in project 2, on the other hand, is not required, and activity A could have been drawn from 10 to
40 and event 20 may be eliminated completely.
Therefore, there are many reasons for using a PERT diagram over a Gantt chart. The PERT
diagram allows:
1. Easy identification of the order of precedence.
2. Easy identification of the critical path and thus critical activities.
3. Easy determination of slack time.
A PERT EXAMPLE. Suppose a systems analyst is trying to set up a realistic schedule for the data
gathering and proposal phases of the systems analysis and design life cycle. The systems analyst
looks over the situation and lists activities that need to be accomplished along the way. This list,
which appears in Figure 3.21, also shows that some activities must precede other activities. The
time estimates were determined as discussed in an earlier section of this chapter.
DRAWING THE PERT DIAGRAM. In constructing the PERT diagram, the analyst looks first at those
activities requiring no predecessor activities, in this case A (conduct interviews) and C (read
company reports). In the example in Figure 3.22, the analyst chose to number the nodes 10, 20,
30, and so on, and he or she drew two arrows out of the beginning node 10. These arrows represent
A, 9
B, 2 C, 5
C, 5
A, 9
B, 2
20
10 40
10 40
30
20
30
Dummy
Dummy Project 1
Project 2
FIGURE 3.20
Precedence of activities is
important in determining the
length of the project when using a
PERT diagram.
Activity DurationPredecessor
A
B
C
D
E
F
G
H
I
Conduct interviews
Administer questionnaires
Read company reports
Analyze data flow
Introduce prototype
Observe reactions to prototype
Perform cost-benefit analysis
Prepare proposal
Present proposal
None
A
None
B, C
B, C
E
D
F, G
H
3
4
4
8
5
3
3
2
2
FIGURE 3.21
Listing activities for use in
drawing a PERT diagram.
82 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
A, 3
C, 4
B, 4
D, 8
E, 5 F, 3
G, 3 H, 2 I, 2
30 50
40
60 70 8010
20
FIGURE 3.22
A completed PERT diagram for
the analysis phase of a systems
project.
activities A and C and are labeled as such. Nodes numbered 20 and 30 are drawn at the end of
these respective arrows. The next step is to look for any activity requiring only A as a predecessor;
task B (administer questionnaires) is the only one, so it can be represented by an arrow drawn
from node 20 to node 30.
Because activities D (analyze data flow) and E (introduce prototype) require both activities
B and C to be finished before they are started, arrows labeled D and E are drawn from node 30,
the event that recognizes the completion of both B and C. This process is continued until the en-
tire PERT diagram is completed. Notice that the entire project ends at an event called node 80.
IDENTIFYING THE CRITICAL PATH. Once the PERT diagram is drawn, it is possible to identify the
critical path by calculating the sum of the activity times on each path and choosing the longest
path. In this example, there are four paths: 10–20–30–50–60–70–80, 10–20–30–40–60–70–80,
10–30–50–60–70–80, and 10–30–40–60–70–80. The longest path is 10–20–30–50–60–70–80,
which takes 22 days. It is essential that the systems analyst carefully monitors the activities on the
critical path so as to keep the entire project on time or even shorten the project length if warranted.
MANAGING THE PROJECT
The process of analysis and design can become unwieldy, especially when the system being de-
veloped is large. To keep the development activities as manageable as possible, we usually em-
ploy some of the techniques of project management to help us get organized.
One important aspect of project management is how to manage one’s schedule to finish the
system on time, but it is not the only thing needed. The person in charge, called the project man-
ager, is often the lead systems analyst. The project manager needs to understand how to determine
what is needed and how to initiate a project; how to develop a problem definition; how to exam-
ine feasibility of completing the systems project; how to reduce risk; how to identify and manage
activities; and how to hire, manage, and motivate other team members.
Addressing System Complexity
Estimating models, such as Costar (www.softstarsystems.com) or Construx (www.construx.com),
work as follows: First the systems analyst enters an estimate of the size of the system. This can
be entered in a number of different ways, including the lines of source code of the current system.
Then it may be helpful to adjust the degree of difficulty based on how familiar the analyst is with
this type of project.
Also considered are other variables, like the experience or capability of the team, the type of
platform or operating system, the level of usability of the finished software (for example, what
languages are necessary), and other factors that can drive up costs. Once the data are entered, cal-
culations are made, and a rough projection of the completion date is produced. As the project gets
underway, more specific estimates are possible.
Another way of estimating the amount of work that needs to be done and how large a staff one
needs to complete a project is called function point analysis. This method takes the five main com-
ponents of a computer system—(1) external inputs, (2) external outputs, (3) external queries, (4) in-
ternal logical files, and (5) external interface files— and then rates them in terms of complexity.
Function point analysis can estimate the time it takes to develop a system in different com-
puter languages and compare them to one another. For more information about function point
analysis, visit the International Function Point Users Group’s Web site at www.ifpug.org.
www.softstarsystems.com
www.construx.com
www.ifpug.org
CHAPTER 3 • PROJECT MANAGEMENT 83
MANAGING ANALYSIS AND DESIGN ACTIVITIES
Along with managing time and resources, systems analysts must also manage people. Manage-
ment is accomplished primarily by communicating accurately to team members who have been
selected for their competency and compatibility. Goals for project productivity must be set, and
members of systems analysis teams must be motivated to achieve them.
Assembling a Team
Assembling a team is desirable. If a project manager has the opportunity to create a dream team
of skilled people to develop a system, whom should he or she choose? In general, project man-
agers need to look for others who share their values of teamwork guided by the desire to deliver
a high-quality system on time and on budget. Other desirable team member characteristics in-
clude a good work ethic, honesty, competency; a readiness to take on leadership based on exper-
tise; motivation, enthusiasm for the project, and trust of teammates.
The project manager needs to know about business principles, but it doesn’t hurt to have at least
one other person on the team who understands how a business operates. Perhaps this person should
be a specialist in the same area as the system being developed. When developing an ecommerce site,
teams can enlist the help of someone in marketing; those developing an inventory system can ask a
person versed in production and operations to provide expertise.
A team ideally should have two systems analysts on it. They can help each other, check each
other’s work, and shift their workloads accordingly. There is certainly a need to have people with
M A C A P P E A L
Color-coding helps a project manager sort out similar phases, tasks, and resources. OmniPlan, avail-
able for Macs, takes advantage of color-coding to set up a project, identify tasks, identify the critical
path, and flag impossible situations.
FIGURE 3.MAC
OmniPlan project management software from The Omni Group.
84 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
programming skills on board. Coding is important, but people who know how to conduct walk-
throughs, reviews, testing, and documenting systems are important as well. Some people are good
at seeing the big picture, while others perform well when tasks are broken down into smaller ones
for them. Every team should have both types of individuals.
Beyond the basics, a project manager should look for people with both experience and en-
thusiasm. Experience is especially important when trying to estimate the time required to
complete a project. Experience in programming can mean code is developed five times faster
than if it is developed by an inexperienced team. A usability expert is also a useful addition to
the team.
The team must be motivated. One way to keep the team positively oriented throughout the
entire process is to select good people at the outset. Look for enthusiasm, imagination, and an
ability to communicate with different kinds of people. These basic attributes hold the potential
for success. It also helps to hire superior writers and articulate speakers who can present propos-
als and work directly with customers.
Trust is an important part of a team. All members of the project need to act responsibly and
agree to do their best and complete their part of the project. People may have different work
styles, but they all need to agree to work together toward a common goal.
Communication Strategies for Managing Teams
Teams have their own personalities, a result of combining each individual team member with
every other in a way that creates a totally new network of interactions. A way to organize your
thinking about teams is to visualize them as always seeking a balance between accomplishing the
work at hand and maintaining the relationships among team members.
In fact, teams will often have two leaders, not just one. Usually one person will emerge who
leads members to accomplish tasks, and another person will emerge who is concerned with the
social relationships among group members. Both are necessary for the team. These individuals
H Y P E R C A S E ® E X P E R I E N C E 3 . 1
“Ihope everyone you’ve encountered at MRE has treated you
well. Here’s a short review of some of the ways you can access our
organization through HyperCase. The reception area at MRE con-
tains the key links to the rest of our organization. Perhaps you’ve al-
ready discovered these on your own, but I wanted to remind you of
them now, because I don’t want to get so engrossed in the rest of our
organizational problems that I forget to mention them.
“The empty doorway you see is a link to the next room, which
we call the East Atrium. You have probably noticed that all open
doorways are links to adjacent rooms. Notice the building map dis-
played in the reception area. You are free to go to public areas such
as the canteen, but as you know, you must have an employee escort
you into a private office. You cannot go there on your own.
“By now you have probably noticed the two documents and
the computer on the small table in the reception area. The little one
is the MRE internal phone directory. Just click on an employee
name, and if that person is in, he or she will grant you an interview
and a tour of the office. I leave you to your own devices in figuring
out what the other document is.
“The computer on the table is on and displays the Web home
page for MRE. You should take a look at the corporate site and visit
all the links. It tells the story of our company and the people who
work here. We’re quite proud of it and have gotten positive feedback
about it from visitors.
“If you have had a chance to interview a few people and see
how our company works, I’m sure you are becoming aware of some
of the politics involved. We are also worried, though, about more
technical issues, such as what constitutes feasibility for a training
project and what does not.”
HYPERCASE Questions
1. What criteria does the Training Unit use to judge the
feasibility of a new project? List them.
2. List any changes or modifications to these criteria that you
would recommend.
3. Snowden Evans has asked you to help prepare a proposal for
a new project tracking system for the Training Unit. Briefly
discuss the technical, economic, and operational feasibility of
each alternative for a proposed project tracking system for
the Training Unit.
4. Which option would you recommend? Use evidence from
HyperCase to support your decision.
CHAPTER 3 • PROJECT MANAGEMENT 85
have been labeled by other researchers as, respectively, task leader and socioemotional leader.
Every team is subject to tensions that are an outgrowth of seeking a balance between accomplish-
ing tasks and maintaining relationships among team members.
For the team to continue its effectiveness, tensions must be continually resolved. Minimiz-
ing or ignoring tensions will lead to ineffectiveness and eventual disintegration of the team. Much
of the tension release necessary can be gained through skillful use of feedback by all team mem-
bers. All members, however, need to agree that the way they interact (i.e., process) is important
enough to merit some time. Productivity goals for processes are discussed in a later section.
Securing agreement on appropriate member interaction involves creating explicit and im-
plicit team norms (collective expectations, values, and ways of behaving) that guide members in
their relationships. A team’s norms belong to it and will not necessarily transfer from one team to
another. These norms change over time and are better thought of as a team process of interaction
rather than a product.
Norms can be functional or dysfunctional. Just because a particular behavior is a norm for
a team does not mean it is helping the team to achieve its goals. For example, an expectation
that junior team members should do all project scheduling may be a team norm. By adhering
to this norm, the team is putting extreme pressure on new members and not taking full advan-
tage of the experience of the team. It is a norm that, if continued, could make team members
waste precious resources.
Team members need to make norms explicit and periodically assess whether norms are func-
tional or dysfunctional in helping the team achieve its goals. The overriding expectation for your
team must be that change is the norm. Ask yourself whether team norms are helping or hindering
the team’s progress.
Setting Project Productivity Goals
When you have worked with your team members on various kinds of projects, you or your team
leader will acquire acumen for projecting what the team can achieve in a specific amount of time.
Using the hints discussed in the earlier section in this chapter on methods for estimating time re-
quired and coupling them with experience will enable the team to set worthwhile productivity
goals.
C O N S U L T I N G O P P O R T U N I T Y 3 . 5
Goal Tending
“ H ere’s what I think we can accomplish in the next five weeks,”
says Hy, the leader of your systems analysis team, as he confidently
pulls out a schedule listing each team member’s name alongside a
list of short-term goals. Just a week ago your systems analysis team
went through an intense meeting on expediting their project sched-
ule for the Kitchener, Ontario, Redwings, a hockey organization
whose management is pressuring you to produce a prototype.
The three other members of the team look at the chart in sur-
prise. Finally, one of the members, Rip, speaks: “I’m in shock. We
each have so much to do as it is, and now this.”
Hy replies defensively, “We’ve got to aim high, Rip. They’re in
the off-season. It’s the only time to get them. If we set our goals too
low, we won’t finish the system prototype, let alone the system itself,
before another hockey season passes. The idea is to give the Kitchener
Redwings the fighting edge through the use of their new system.”
Fiona, another team member, enters the discussion, saying,
“Goodness knows their players can’t give them that!” She pauses
for the customary groan from the assembled group, then continues.
“But seriously, these goals are killers. You could have at least asked
us what we thought, Hy. We may even know better than you what’s
possible.”
“This is a pressing problem, not a tea party, Fiona,” Hy replies.
“Polite polling of team members was out of the question. Some-
thing had to be done quickly. So I went ahead with these. I say we
submit our schedule to management based on this. We can push
back deadlines later if we have to. But this way they’ll know we’re
committed to accomplishing a lot during the off-season.”
As a fourth team member listening to the foregoing exchange,
formulate three suggestions that would help Hy improve his ap-
proach to goal formation and presentation. How well motivated do
you think the team will be if they share Fiona’s view of Hy’s goals?
What are the possible ramifications of supplying management with
overly optimistic goals? Write one paragraph devoted to short-term
effects and another one discussing the long-term effects of setting
unrealistically high goals.
86 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
Systems analysts are accustomed to thinking about productivity goals for employees who
show tangible outputs, such as the number of blue jeans sewn per hour, the number of entries
keyed in per minute, or the number of items scanned per second. As manufacturing productivity
rises, however, it is becoming clear that managerial productivity must keep pace. It is with this
aim in mind that productivity goals for the systems analysis team are set.
Goals need to be formulated and agreed to by the team, and they should be based on team
members’ expertise, former performance, and the nature of the specific project. Goals will vary
somewhat for each project undertaken, because sometimes an entire system will be installed,
whereas other projects might involve limited modifications to a portion of an existing system.
Motivating Project Team Members
Although motivation is an extremely complex topic, it is a good one to consider, even if briefly,
at this point. To oversimplify, recall that people join organizations to provide for some of their ba-
sic needs such as food, clothing, and shelter. All humans, however, also have higher-level needs,
which include affiliation, control, independence, and creativity. People are motivated to fulfill un-
met needs on several levels.
Team members can be motivated, at least partially, through participation in goal setting, as
described in the previous section. The very act of setting a challenging but achievable goal and
then periodically measuring performance against the goal seems to work in motivating people.
Goals act almost as magnets in attracting people to achievement.
Part of the reason goal setting motivates people is that team members know prior to any per-
formance review exactly what is expected of them. The success of goal setting for motivating can
also be ascribed to it, affording each team member some autonomy in achieving the goals. Al-
though a goal is predetermined, the means to achieve it may not be. In this instance team mem-
bers are free to use their own expertise and experience to meet their goals.
Setting goals can also motivate team members by clarifying for them and others what must
be done to get results. Team members are also motivated by goals because goals define the level
of achievement that is expected of them. This use of goals simplifies the working atmosphere, but
it also electrifies it with the possibility that what is expected can indeed be done.
Managing Ecommerce Projects
Many of the approaches and techniques discussed earlier are transferable to ecommerce project
management. You should be cautioned, however, that although there are many similarities, there
are also many differences. One difference is that the data used by ecommerce systems are scat-
tered all over the organization. Therefore, you are not just managing data in a self-contained de-
partment or even one solitary unit. Hence, many organizational politics can come into play,
because units often feel protective of the data they generate and do not understand the need to
share them across the organization.
Another stark difference is that ecommerce project teams typically need more staff with a vari-
ety of skills, including developers, consultants, database experts, and system integrators, from across
the organization. Neatly defined, stable project groups that exist within a cohesive IS group or sys-
tems development team will be the exception rather than the rule. In addition, because so much help
may be required initially, ecommerce project managers need to build partnerships externally and in-
ternally well ahead of the implementation, perhaps sharing talent across projects to defray costs of
ecommerce implementations and to muster the required numbers of people with the necessary ex-
pertise. The potential for organizational politics to drive a wedge between team members is very real.
One way to prevent politics from sabotaging a project is for the ecommerce project manager
to emphasize the integration of the ecommerce with the organization’s internal systems and in so
doing emphasize the organizational aspect embedded in the ecommerce project. As one ecom-
merce project manager told us, “Designing the front end [what the consumer sees] is the easy part
of all this. The real challenge comes from integrating ecommerce strategically into all the orga-
nization’s systems.”
A fourth difference between traditional project management and ecommerce project manage-
ment is that because the system will be linking with the outside world via the Internet, security is
of the utmost importance. Developing and implementing a security plan before the new system is
in place is a project in and of itself and must be managed as such.
CHAPTER 3 • PROJECT MANAGEMENT 87
Creating the Project Charter
Part of the planning process is to agree on what will be done and at what time. Analysts who are
external consultants, as well as those who are organization members, need to specify what they
will eventually deliver and when they will deliver it. This chapter has elaborated on ways to es-
timate the delivery date for the completed system and also how to identify organizational goals
and assess the feasibility of the proposed system.
The project charter is a written narrative that clarifies the following questions:
1. What does the user expect of the project (what are the objectives)? What will the system do
to meet the needs (achieve the objectives)?
2. What is the scope (or what are the boundaries) of the project? (What does the user consider
to be beyond the project’s reach?)
3. What analysis methods will the analyst use to interact with users in gathering data,
developing, and testing the system?
4. Who are the key participants? How much time are users willing and able to commit to
participating?
5. What are the project deliverables? (What new or updated software, hardware, procedures,
and documentation do the users expect to have available for interaction when the project is
done?)
6. Who will evaluate the system and how will they evaluate it? What are the steps in the
assessment process? How will the results be communicated and to whom?
7. What is the estimated project timeline? How often will analysts report project milestones?
8. Who will train the users?
9. Who will maintain the system?
The project charter describes in a written document the expected results of the systems proj-
ect (deliverables) and the time frame for delivery. It essentially becomes a contract between the
chief analyst (or project manager) and their analysis team with the organizational users request-
ing the new system.
Avoiding Project Failures
The early discussions you have with management and others requesting a project, along with the
feasibility studies you do, are usually the best defenses possible against taking on projects that
have a high probability of failure. Your training and experience will improve your ability to judge
the worthiness of projects and the motivations that prompt others to request projects. If you are
part of an in-house systems analysis team, you must keep current with the political climate of the
organization as well as with financial and competitive situations.
It is important, however, to note that systems projects can and do have serious problems.
Those that are developed using agile methods are not immune to such troubles. In order to illus-
trate what can go wrong in a project, a systems analyst may want to draw a fishbone diagram (also
called a cause-and-effect diagram or an Ishikawa diagram). When you examine Figure 3.23, you
will see that it is called a fishbone diagram because it resembles the skeleton of a fish.
The value of fishbone diagrams is to systematically list all the possible problems that can oc-
cur. In the case of the agile approach, it is useful to organize the fishbone diagram by listing all
the resource control variables on the top and all the activities on the bottom. Some problems such
as schedule slips might be obvious, but others such as scope creep (the desire to add features af-
ter the analyst hears new stories) or developing features with little value are not as obvious.
You can also learn from the wisdom gained by people involved in earlier project failures.
When asked to reflect on why projects had failed, professional programmers cited the setting of
impossible or unrealistic dates for completion by management, belief in the myth that simply
adding more people to a project would expedite it (even though the original target date on the
project was unrealistic), and management behaving unreasonably by forbidding the team to seek
professional expertise from outside of the group to help solve specific problems.
Remember that you are not alone in the decision to begin a project. Although apprised of your
team’s recommendations, management will have the final say about whether a proposed project
is worthy of further study (that is, further investment of resources). The decision process of your
team must be open and stand up to scrutiny from those outside of it. The team members should
88 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
consider that their reputation and standing in the organization are inseparable from the projects
they accept.
THE SYSTEMS PROPOSAL
Organizing the Systems Proposal
While the project charter serves the purpose of identifying objects, determining scope, and as-
signing responsibilities, the analyst still needs to prepare a systems proposal that includes much
of the detail about system needs, options, and recommendations. This section covers both the con-
tent and style that makes up a systems proposal.
WHAT TO INCLUDE IN THE SYSTEMS PROPOSAL. Ten main sections comprise the written systems
proposal. Each part has a particular function, and the eventual proposal should be arranged in the
following order:
1. Cover letter.
2. Title page of project.
3. Table of contents.
4. Executive summary (including recommendations).
5. Outline of systems study with appropriate documentation.
6. Detailed results of the systems study.
7. Systems alternatives (three or four possible solutions).
8. Systems analysts’ recommendations.
9. Proposal summary.
10. Appendices (assorted documentation, summary of phases, correspondence, and so on).
A cover letter to managers and the IT task force should accompany the systems proposal. It
should list the people who did the study and summarize the objectives of the study. Keep the cover
letter concise and friendly.
Include on the title page the name of the project, the names of the systems analysis team mem-
bers, and the date the proposal is submitted. The proposal title must accurately express the content
of the proposal, but it can also exhibit some imagination. The table of contents can be useful to read-
ers of long proposals. If the proposal is less than 10 pages long, omit the table of contents.
Defect rate excessive
Customer not
satisfied with interface
Fear of change
Design not
creative enough
Time
High staff turnover
Features with
little value
Need for additional
programmers
Scope creep
Schedule slips
Recoding required by
business changes
Inadequate feedback
from testing
Communication
breakdown
System fails tests
Misunderstanding of
businessToo complex code
Cost ScopeQuality
Designing Testing Coding Listening
FIGURE 3.23
A fishbone diagram may be used
to identify all the things that can
go wrong in developing a system.
CHAPTER 3 • PROJECT MANAGEMENT 89
The executive summary, in 250 to 375 words, provides the who, what, when, where, why,
and how of the proposal, just as would the first paragraph in a news story. It should also include
the recommendations of the systems analysts and desired management action, because some peo-
ple will only have time to read the summary. It should be written last, after the rest of the proposal
is complete.
The outline of the systems study provides information about all the methods used in the study
and who or what was studied. Any questionnaires, interviews, sampling of archival data, obser-
vation, or prototyping used in the systems study should be discussed in this section.
This detailed results section describes what the systems analyst has found out about human
and systems needs through all the methods described in the preceding section. Conclusions about
problems workers experience when interacting with technologies and systems that have come to
the fore through the study should be noted here. This section should raise the problems or sug-
gest opportunities that call forth the alternatives presented in the next section.
In the systems alternatives section of the proposal, the analyst presents two or three alterna-
tive solutions that directly address the aforementioned problems. The alternatives you present
should include one that recommends keeping the system the same. Each alternative should be ex-
plored separately. Describe the costs and benefits of each situation. Because there are usually
trade-offs involved in any solution, be sure to include the advantages and disadvantages of each.
Each alternative must clearly indicate what users and managers must do to implement it. The
wording should be as clear as possible, such as, “Buy notebook computers for all middle man-
agers,” “Purchase packaged software to support users in managing inventory,” or “Modify the ex-
isting system through funding in-house programming efforts.”
After the systems analysis team has weighed the alternatives, it will have a definite profes-
sional opinion about which solution is most workable. The systems analysts’ recommendations
section expresses the recommended solution. Include the reasons supporting the team’s recom-
mendation so that it is easy to understand why it is being made. The recommendation should flow
logically from the preceding analysis of alternative solutions, and it should clearly relate the
human–computer interaction findings to the choice offered.
The proposal summary is a brief statement that mirrors the content of the executive summary.
It gives the objectives of the study and the recommended solution. The analyst should once more
stress the project’s importance and feasibility along with the value of the recommendations for
reaching the users’ goals and improving the business. Conclude the proposal on a positive note.
The appendix is the last part of the systems proposal, and it can include any information that
the systems analyst feels may be of interest to specific individuals, but that is not essential for un-
derstanding the systems study and what is being proposed.
Once the systems proposal is written, carefully select who should receive the report. Person-
ally hand the report to the people you have selected. Your visibility is important for the acceptance
and eventual success of the system.
Using Figures for Effective Communication
The emphasis so far in this section has been on considering your audience when composing the
systems proposal. Tables and graphs as well as words are important in capturing and communi-
cating the basics of the proposed system. Good design should never be underestimated.
Integrating figures into your proposal helps demonstrate that you are responsive to the dif-
ferent ways people absorb information. Figures in the report supplement written information and
must always be interpreted in words; they should never stand alone.
EFFECTIVE USE OF TABLES. Although tables are technically not visual aids, they provide a
different way of grouping and presenting analyzed data that the analyst wants to communicate to
the proposal reader.
Tables use labeled columns and rows to present statistical or alphabetical data in an organized
way. Each table must be numbered according to the order in which it appears in the proposal and
should be meaningfully titled. Figure 3.24 shows the appropriate layout and labeling for a table.
Some guidelines for tables are the following:
1. Integrate tables into the body of the proposal. Don’t relegate them to the appendices.
2. Try to fit the entire table vertically on a single page if possible.
90 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
3. Number and title the table at the top of the page. Make the title descriptive and meaningful.
4. Label each row and column. Use more than one line for a title if necessary.
5. Use a boxed table if room permits. Vertically ruled columns will enhance the readability.
6. Use footnotes if necessary to explain detailed information contained in the table.
Several methods for comparing costs and benefits were presented in previous sections. Tabled re-
sults of those comparisons should appear in the systems proposal. If a break-even analysis is done,
a table illustrating results of the analysis should be included. Payback can be shown in tables that
serve as additional support for graphs. A short table comparing computer systems or options
might also be included in the systems proposal.
EFFECTIVE USE OF GRAPHS. There are many different kinds of graphs: line graphs, column
graphs, bar charts, and pie charts to name a few. Line graphs, column graphs, and bar charts
compare variables, whereas pie charts and area charts illustrate the composition of 100 percent of
an entity.
The guidelines for including effective graphs in a proposal (see Figure 3.25) are as follows:
1. Choose a style of graph that communicates your intended meaning well.
2. Integrate the graph into the body of the proposal.
3. Give the graph a sequential figure number and a meaningful title.
4. Label each axis and any lines, columns, bars, or pieces of the pie on the graph.
5. Include a key to indicate differently colored lines, shaded bars, or crosshatched areas.
Much of the detail that goes into a systems proposal is obtained from interviewing, provid-
ing questionnaires, sampling, discovering other hard data, and by observation. These topics are
discussed in the next two chapters.
Type of Set 2004 2005 2006 2007 2008 2009
40 kg grey 3.5 3.4 3.7 3.0 2.5 2.0
48 kg grey 5.9 5.5 5.1 4.6 2.0 2.0
55 kg grey 3.9 4.8 5.5 3.5 4.2 5.5
68 kg grey 1.0 1.9 2.2 2.5 1.3 1.2
100 kg grey 1.2 1.8 1.5 0.7 1.2 1.5
55 kg r,w,b* – – – 3.4 6.5 2.6
100 kg r,w,b – – – 0.8 1.8 1.2
Table 4Number of Sets of Barbells Sold by Weight and Color
for the Years 2004–2009 Inclusive
* r,w,b, stands for red, white, and blue
Use footnotes to
explain information.
Try to fit the table
vertically on a
single page.
Label the rows
and columns.
Make the title
descriptive.The use of a box
enhances thetable.
FIGURE 3.24
Guidelines for creating effective
tables.
CHAPTER 3 • PROJECT MANAGEMENT 91
SUMMARY
The five major project management fundamentals that the systems analyst must handle are (1) project initi-
ation—defining the problem, (2) determining project feasibility, (3) activity planning and control, (4) proj-
ect scheduling, and (5) managing systems analysis team members. When faced with questions of how
businesses can meet their goals and solve systems problems, the analyst creates a problem definition. A prob-
lem definition is a formal statement of the problem, including (1) the issues of the present situation, (2) the
objectives for each issue, (3) the requirements that must be included in all proposed systems, and (4) the con-
straints that limit system development.
Selecting a project is a difficult decision, because more projects will be requested than can actually be
done. Five important criteria for project selection are (1) that the requested project be backed by manage-
ment, (2) that it be timed appropriately for a commitment of resources, (3) that it move the business toward
attainment of its goals, (4) that it be practical, and (5) that it be important enough to be considered over other
possible projects.
If a requested project meets these criteria, a feasibility study of its operational, technical, and economic
merits can be done. Through the feasibility study, systems analysts gather data that enable management to
decide whether to proceed with a full systems study. By inventorying equipment already on hand and on or-
der, systems analysts will be able to better determine whether new, modified, or current computer hardware
is to be recommended.
Computer hardware can be acquired through purchase, lease, or rental. Vendors will supply support
services such as preventive maintenance and user training that are typically negotiated separately. Software
can be created as a custom product, purchased as a commercial off-the-shelf (COTS) software package, or
outsourced to an application service provider (ASP).
Preparing a systems proposal means identifying all the costs and benefits of a number of alternatives.
The systems analyst has a number of methods available to forecast future costs, benefits, volumes of
transactions, and economic variables that affect costs and benefits. Costs and benefits can be tangible
Cost
($)
70,000
60,000
Break-Even
Point
50,000
40,000
30,000
20,000
10,000
2006 2007 2008 2009 2010
Year
Include a key.
Include a
meaningful title.
Cost of proposed system Cost of current system
Figure 5The proposed system is expected toreach the break-even point in 2010.
Label the axes.
FIGURE 3.25
Guidelines for drawing effective
line graphs.
92 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
H Y P E R C A S E ® E X P E R I E N C E 3 . 2
“ Sometimes the people who have been here for some time are
surprised at how much we have actually grown. Yes, I do admit that
it isn’t easy to keep track of what each person is up to or even what
purchases each department has made in the way of hardware and
software. We’re working on it, though. Snowden would like to see
more accountability for computer purchases. He wants to make sure
we know what we have, where it is, why we have it, who’s using it,
and if it’s boosting MRE productivity, or, as he so delicately puts it,
‘to see whether it’s just an expensive toy’ that we can live without.”
HYPERCASE Questions
1. Complete a computer equipment inventory for the Training
and Management Systems Unit, describing all the systems
you find. Hint: Create an inventory form to simplify your
task.
2. Using the software evaluation guidelines given in the text, do
a brief evaluation of GEMS, a software package used by the
Management Systems employees. In a paragraph, briefly
critique this custom software by comparing it with
commercial off-the-shelf software such as Microsoft Project.
3. List the intangible costs and benefits of GEMS as reported by
employees of MRE.
4. Briefly describe the two alternatives Snowden is considering
for the proposed project tracking and reporting system.
5. What organizational and political factors should Snowden
consider in proposing his new system at MRE? (In a brief
paragraph, discuss three central conflicts.)
(quantifiable) or intangible (nonquantifiable and resistant to direct comparison). A systems analyst has
many methods for analyzing costs and benefits, including break-even analysis, the payback method, and
cash-flow analysis.
Project planning includes the estimation of time required for each of the analyst’s activities, scheduling
them, and expediting them if necessary to ensure that a project is completed on time. One technique available to
the systems analyst for scheduling tasks is the Gantt chart, which displays activities as bars on a graph.
Another technique, called Program Evaluation and Review Techniques (PERT), displays activities as
arrows on a network. PERT helps the analyst determine the critical path and slack time, which is the infor-
mation required for effective project control.
FIGURE 3.HC1
The reception room resembles a typical corporation. While you are in this HyperCase
screen, find the directory if you want to visit someone.
Creating a project charter containing user expectations and analyst deliverables is recommended, since
unrealistic management deadlines, adding unneeded personnel to a project that is trying to meet an unreal-
istic deadline, and not permitting developer teams to seek expert help outside their immediate group, were
cited by programmers as reasons projects had failed. Project failures can usually be avoided by examining
the motivations for requested projects, as well as your team’s motives for recommending or avoiding a par-
ticular project.
The systems analyst has three main steps to follow for putting together an effective systems proposal:
effectively organizing the proposal content, writing the proposal in an appropriate business style, and orally
presenting an informative systems proposal. To be effective, the proposal should be written in a clear and
understandable manner, and its content should be divided into 10 functional sections. Visual considerations
are important when putting together a proposal.
CHAPTER 3 • PROJECT MANAGEMENT 93
KEYWORDS AND PHRASES
benchmarking
break-even analysis
cash-flow analysis
critical path
ecommerce project management
economic feasibility
forecasting
function point analysis
Gantt chart
intangible benefits
intangible costs
moving average
operational feasibility
payback
PERT diagram
present value
problem definition
productivity goals
project charter
socioemotional leader
systems proposal
tangible benefits
tangible costs
task leader
team motivation
team norms
team process
technical feasibility
vendor support
REVIEW QUESTIONS
1. What are the five major project fundamentals?
2. List three ways to find out about problems or opportunities that might call for a systems solution.
3. List the five criteria for systems project selection.
4. Define technical feasibility.
5. Define economic feasibility.
6. Define operational feasibility.
7. List four criteria for evaluating system hardware.
8. What are the three main options for the acquisition of computer hardware?
9. What does COTS stand for?
10. What does ASP stand for in terms of software delivery?
11. Define tangible costs and benefits. Give an example of each one.
12. Define intangible costs and benefits. Give an example of each one.
13. List four techniques for comparing the costs and benefits of a proposed system.
14. When is break-even analysis useful?
15. What are the three drawbacks of using the payback method?
16. When is cash-flow analysis used?
17. As a general guideline, when should present value analysis be used?
18. What is a Gantt chart?
19. When is a PERT diagram useful for systems projects?
20. List three advantages of using a PERT diagram over a Gantt chart for scheduling systems projects.
21. Define the term critical path.
22. How does a project manager assess the risk of things going wrong and take that into consideration
when planning the time needed to complete the project?
23. List the two types of team leaders.
24. What is meant by a dysfunctional team norm?
25. What is meant by team process?
26. What are three reasons that goal setting seems to motivate systems analysis team members?
27. What are four ways in which ecommerce project management differs from traditional project
management?
28. What elements are contained in a project charter?
94 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
29. What is a fishbone diagram used for?
30. What are the three steps the systems analyst must follow to put together an effective systems
proposal?
31. List the 10 main sections of the systems proposal.
PROBLEMS
1. Williwonk’s Chocolates of St. Louis makes an assortment of chocolate candy and candy novelties.
The company has six in-city stores, five stores in major metropolitan airports, and a small mail-order
branch. Williwonk’s has a small, computerized information system that tracks inventory in its plant,
helps schedule production, and so on, but this system is not tied directly into any of its retail outlets.
The mail-order system is handled manually.
Recently, several Williwonk’s stores experienced a rash of complaints from mail-order
customers that the candy was spoiled upon arrival, that it did not come when promised, or that it
never arrived; the company also received several letters complaining that candy in various airports
tasted stale. Williwonk’s has been selling a new, low-carb, dietetic form of chocolate made with
sugar-free, artificial sweetener. Sales have been brisk, but there have been problems shipping the
wrong type of chocolate to an address with a diabetic person. There were a number of complaints,
and Williwonk’s sent a number of free boxes of chocolate to ease the situation.
Management would like to sell products using the Web but only has a few Web pages with
information about the company and an order form that could be printed. Web ordering does not exist.
One of the senior executives would like to sell customized chocolates with the name of a person on
each piece. Although the production area has assured management that this could be easily done,
there is no method to order customized chocolates.
Another senior executive has mentioned that Williwonk’s has partnered with several European
chocolate manufacturers and will be importing chocolate from a variety of countries. At present, this
must be done over the phone, by email, or by mail. The executive wants an internal Web site that will
enable employees to order directly from the partner companies. All this has led a number of
managers to request trend analysis. Too much inventory results in stale chocolate, while at other
times there is a shortage of a certain kind of chocolate.
Seasonal and holiday variation trends would help Williwonk’s maintain an adequate inventory.
The inventory control manager has insisted that all changes must be implemented before the next
holiday season. “The time for this to be complete is an absolute due date,” remarked Candy, a senior
manager. “Make sure that everything works perfectly before the site goes public,” she continues. “I
don’t want any customers receiving the wrong chocolates!” In addition, the order processing
manager has mentioned that the system must be secure.
You had been working for two weeks with Williwonk’s on some minor modifications for its
inventory information system when you overheard two managers discussing these occurrences. List
the possible opportunities or problems among them that might lend themselves to systems projects.
2. Where is most of the feedback on problems with Williwonk’s products coming from in Problem 1?
How reliable are the sources? Explain in a paragraph.
3. After getting to know them better, you have approached Williwonk’s management people with your
ideas on possible systems improvements that could address some of the problems or opportunities
given in Problem 1.
a. In two paragraphs, provide your suggestions for systems projects. Make any realistic
assumptions necessary.
b. Are there any problems or opportunities discussed in Problem 1 that are not suitable? Explain
your response.
4. Create a problem definition for Williwonk’s, as described in Problem 1. Estimate the weights of
importance. Include at least one requirement and one constraint.
5. Create a list of user requirements for the problem definition created in Problem 4.
6. Delicato, Inc., a manufacturer of precise measuring instruments for scientific purposes, has presented
you with a list of attributes that its managers think are probably important in selecting a vendor for
computer hardware and software. The criteria are not listed in order of importance.
1. Low price.
2. Precisely written software for engineering applications.
3. Vendor performs routine maintenance on hardware.
4. Training for Delicato employees.
a. Critique the list of attributes in a paragraph.
b. Using its initial input, help Delicato, Inc., draw up a more suitable list of criteria for selecting
computer hardware and software vendors.
7. SoftWear Silhouettes is a rapidly growing mail-order house specializing in all-cotton clothing.
Management would like to expand sales to the Web with the creation of an ecommerce site. The
CHAPTER 3 • PROJECT MANAGEMENT 95
Item Proposed System Costs Present System Costs
Year 1
Equipment Lease $20,000 $11,500
Salaries 30,000 50,000
Overhead 4,000 3,000
Development 30,000 —
Year 2
Equipment Lease $20,000 $10,500
Salaries 33,000 55,000
Overhead 4,400 3,300
Development 12,000 —
Year 3
Equipment Lease $20,000 $10,500
Salaries 36,000 60,000
Overhead 4,900 3,600
Development — —
Year 4
Equipment Lease $20,000 $10,500
Salaries 39,000 66,000
Overhead 5,500 4,000
Development — —
company has two full-time system analysts and one programmer. Company offices are located in a
small, isolated New England town, and the employees who handle the traditional mail-order business
have little computer training.
a. Considering the company’s situation, draw up a list of software attributes that SoftWear
Silhouettes should emphasize in its choice of software to create a Web site and integrate the mail-
order business with business from the Web site.
b. Would you recommend COTS software, custom software, or outsourcing to an ASP? State your
choice and defend it in a paragraph.
c. List the variables that contributed to your response in part b.
8. The following is 12 years’ demand for Viking Village, a game now available for handhelds and
smartphones.
a. Graph the demand data for Viking Village.
b. Determine the linear trend for Viking Village using a three-year moving average.
9. Do the data for Viking Village appear to have a cyclical variation? Explain.
10. Interglobal Paper Company has asked for your help in comparing its present computer system with a
new one its board of directors would like to see implemented. Proposed system and present system
costs are as follows:
Year Demand
1998 20,123
1999 18,999
2000 20,900
2001 31,200
2002 38,000
2003 41,200
2004 49,700
2005 46,400
2006 50,200
2007 52,300
2008 49,200
2009 57,600
a. Using break-even analysis, determine the year in which Interglobal Paper will break even.
b. Graph the costs and show the break-even point.
96 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
Year Benefits
1 $55,000
2 75,000
3 80,000
4 85,000
11. The following are system benefits for Interglobal Paper Company (from Problem 10):
a. Use the costs of Interglobal Paper’s proposed system from Problem 10 to determine the payback
period (use the payback method).
b. Graph the benefits versus the costs and indicate the payback period.
12. Glenn’s Electronics, a small company, has set up a computer service. The table that follows shows
the revenue expected for the first five months of operation, in addition to the costs for office
remodeling, and so on. Determine the cash flow and accumulated cash flow for the company. When
is Glenn’s expected to show a profit?
July August September October November
Revenue $35,000 $36,000 $42,000 $48,000 $57,000
Costs
Office Remodeling $25,000 $8,000
Salaries 11,000 12,100 $13,300 $14,600 $16,000
Training 6,000 6,000
Equipment Lease 8,000 8,480 9,000 9,540 10,110
Supplies 3,000 3,150 3,300 3,460 3,630
Year Costs Benefits
1 $33,000 $21,000
2 34,600 26,200
3 36,300 32,700
4 38,100 40,800
5 40,000 51,000
6 42,000 63,700
13. Alamo Foods of San Antonio wants to introduce a new computer system for its perishable products
warehouse. The costs and benefits are as follows:
a. Given a discount rate of 8 percent (.08), perform present value analysis on the data for Alamo
Foods. (Hint: Use the formula
to find the multipliers for years 1 to 6.)
b. What is your recommendation for Alamo Foods?
14. a. Suppose the discount rate in Problem 13a changes to 13 percent (.13). Perform present value
analysis using the new discount rate.
b. What is your recommendation to Alamo Foods now?
c. Explain the difference between Problem 13b and Problem 14b.
15. Solve Problem 13 using an electronic spreadsheet program such as Excel.
16. Use a spreadsheet program to solve Problem 12.
17. Solve Problem 13 using a function for net present value, such as @NPV (x, range) in Excel.
18. Brian F. O’Byrne (“F,” he says, stands for “frozen.”) owns a frozen food company and wants to
develop an information system for tracking shipments to warehouses.
a. Using the data from the table in Figure 3.EX1, draw a Gantt chart to help Brian organize his
design project.
b. When is it appropriate to use a Gantt chart? What are the disadvantages? Explain in a paragraph.
1
111 + i 2 n
CHAPTER 3 • PROJECT MANAGEMENT 97
19. In addition to a Gantt chart, you’ve drawn Brian a PERT diagram so that you can communicate the
necessity to keep an eye on the critical path. Consult Figure 3.EX2, which was derived from the data
from Figure 3.EX1. List all paths, and calculate and identify the critical path.
Description
Draw data flow
Draw decision tree
Revise tree
Write up project
Organize data dictionary
Do output prototype
Revise output design
Write use cases
Design database
Task
A
B
C
D
E
F
G
H
I
Must Follow
None
A
B
C, I
A
None
F
None
H, E, and G
Time (Weeks)
5
4
10
4
7
2
9
10
8
FIGURE 3.EX1
Data to help in the organization of
a design project for creating an
information system that tracks
shipments of frozen foods to
warehouses.
Description
Interview executives
Interview staff in order fulfillment
Design input prototype
Design output prototype
Write use cases
Record staff reactions to prototypes
Develop system
Write up training manual
Train staff working in order fulfillment
Task
A
B
C
D
E
F
G
H
I
Must Follow
None
None
B
A, C
A, C
D
E, F
B, G
H
Time (Weeks)
6
3
2
3
4
2
5
3
2
FIGURE 3.EX3
Tasks to be performed during
systems development of an order
fulfillment system.
10
20
30
50
40
7060
A
F G
E
B
I
C
D
H
FIGURE 3.EX2
The PERT diagram from Brian’s
Frozen Foods.
20. Cherry Jones owns a homeopathic medicine company called Faithhealers. She sells vitamins and
other relatively nonperishable products for those who want choices regarding alternative medicine.
Cherry is developing a new system that would require her staff to be retrained. Given the information
in Figure 3.EX3, make a PERT diagram for her and identify the critical path. If Cherry could find a
way to save time on the “write use cases” phase, would it help? Why or why not?
21. Angus McIndoe wants to modernize his popular restaurant by adapting it more closely to the
preferences of his repeat customers—keeping track of his customers’ likes and dislikes. Information
such as where they like to sit, what they like to eat, and when they normally arrive at the restaurant
are all items of interest to him, since he believes that in this way he can better serve his customers.
Angus has asked you to develop a system for him that will help make his customers happy while
increasing his business.
You have heard what Angus had to say about his customers. There are certainly more
preferences that he can keep track of.
Develop a problem definition for Angus, similar to the one developed for Catherine’s Catering
in this chapter.
22. Recently, two analysts just out of college have joined your systems analyst group at the newly
formed company, Mega Phone. When talking to you about the group, they mention that some things
strike them as odd. One is that group members seem to look up to two group leaders, Bill and Penny,
not just one.
98 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
Their observation is that Bill seems pretty relaxed, whereas Penny is always planning and
scheduling activities. They have also observed that everyone “just seems to know what to do” when
they get into a meeting, even though no instructions are given. Finally, they have remarked on the
openness of the group in addressing problems as they arise, instead of letting things get out of hand.
a. By way of explanation to the new team members, label the types of leaders Bill and Penny
appear to be, respectively.
b. Explain the statement that “everyone just seems to know what to do.” What is guiding their
behavior?
c. What concept best describes the openness of the group that the new team members
commented on?
23. “I think it’s only fair to write up all the alternatives you’ve considered,” says Lou Cite, a personnel
supervisor for Day-Glow Paints. “After all, you’ve been working on this systems thing for a while
now, and I think my boss and everyone else would be interested to see what you’ve found out.” You
are talking with Lou as you prepare to put together the final systems proposal that your team will be
presenting to upper management.
a. In a paragraph, explain to Lou why your proposal will not (and should not) contain all the
alternatives that your team has considered.
b. In a paragraph, discuss the sorts of alternatives that should appear in the final systems proposal.
GROUP PROJECTS
1. The Weil Smile Clinic is a dental practice run by Drs. Bonnie and Jeff, and they need to keep the
necessary patient and insurance data safe and secure. They looked into online backup like SOS
Online, Spare Backup, Mozy Remote Backup, and Data Deposit Box. Look into the cost of these or
other services, then help Drs. Bonnie and Jeff make a decision. What are the intangible costs and
benefits of backing up this way? Should they use a backup system or find some other way? Defend
your analysis and recommendations.
2. Explore four or five voice-over IP (VoIP) providers. Make a list of costs including the setup fee,
monthly cost of the basic plan, monthly cost of the unlimited plan, and cost of an adapter or other
fees if required. Then make a list of attributes, such as free in-network calls, international calling,
virtual telephone numbers, teleconferencing, support for caller ID, and so on. Explain how a person
would use all of the quantitative and qualitative information to make an informed decision about
which VoIP provider to select. Are any other variables important? Would you recommend any type of
software to help compare these services?
3. Make a choice on a VoIP provider based on the analysis in Group Project 2.
4. With your group members, explore project management software such as Microsoft Project. What
features are available? Work with your group to list them. Have your group evaluate the usefulness of
the software for managing a systems analysis and design team project. In a paragraph, state whether
the software you are evaluating facilitates team member communication and management of team
activities, time, and resources. State which particular features support these aspects of any project.
Note whether the software falls short of these criteria in any regard.
5. Draw a fishbone diagram of possible problems that can occur when constructing a Web site for a
travel company that wants to sell vacations online for the next big travel period (either December
or June).
SELECTED BIBLIOGRAPHY
Alter, S. Information Systems: The Foundation of E-Business, 4th ed. Upper Saddle River, NJ: Prentice
Hall, 2002.
Bales, R. F. Personality and Interpersonal Behavior. New York: Holt, Rinehart and Winston, 1970.
Carnegie-Mellon Software Engineering Institute, “CBS Overview.” Available at: www.sei.cmu.edu/cbs/
overview.html. Last accessed July 15, 2009.
Construx Software Builders. Available at: www.construx.com. Last accessed July 15, 2009.
Costar Web site. Available at: www.softstarsystems.com. Last accessed July 15, 2009.
Glass, R. “Evolving a New Theory of Project Success.” Communications of the ACM, Vol. 42, No. 11, 1999,
pp. 17–19.
Levine, D. M., P. R. Ramsey, and M. L. Berenson. Business Statistics for Quality and Productivity. Upper
Saddle River, NJ: Prentice Hall, 1995.
Linberg, K. R. “Software Perceptions About Software Project Failure: A Case Study.” Journal of Systems
and Software, Vol. 49, Nos. 2 and 3, 1999, pp. 177–92.
Longstreet Consulting. www.ifpug.org. Last accessed July 15, 2009.
McBreen, P. Questioning Extreme Programming. Boston: Addison-Wesley Co., 2003.
www.sei.cmu.edu/cbs/overview.html
www.sei.cmu.edu/cbs/overview.html
www.construx.com
www.softstarsystems.com
www.ifpug.org
CHAPTER 3 • PROJECT MANAGEMENT 99
Schein, E. H. Process Consultation: Its Role in Organization Development. Reading, MA: Addison-
Wesley, 1969.
Shtub, A., J. F. Bard, and S. Globerson. Project Management: Processes, Methodologies, and Economics,
3d ed. Upper Saddle River, NJ: Pearson, 2005.
Software Product Research. Available at: www.spr.com. Last accessed July 15, 2009.
Stefik, M., G. Foster, D. G. Bobrow, K. Kahn, S. Lanning, and L. Suchman. “Beyond the Chalkboard: Com-
puter Support for Collaboration and Problem Solving in Meetings.” Communications of the ACM, Vol.
30, No. 1, January 1987, pp. 32–47.
Vigder, M. R., W. M. Gentleman, and J. C. Dean. “Using COTS Software in Systems Development.” http://
www.nrc-cnrc.gc.ca/eng/projects/iit/commercial-software.html. Last accessed July 15, 2009.
Walsh, B. “Your Network’s Not Ready for E-Commerce.” Network Computing. Available at: www.
networkcomputing.com/922/922colwalsh.html. Last accessed July 15, 2009.
www.spr.com
http://www.nrc-cnrc.gc.ca/eng/projects/iit/commercial-software.html
http://www.nrc-cnrc.gc.ca/eng/projects/iit/commercial-software.html
www.networkcomputing.com/922/922colwalsh.html
www.networkcomputing.com/922/922colwalsh.html
100 PART I • SYSTEMS ANALYSIS FUNDAMENTALS
E P I S O D E 3
CPU CASE
ALLEN SCHMIDT, JULIE E. KENDALL, AND KENNETH E. KENDALL
Getting to Know U
Chip enters Anna’s office one day, saying, “I think the project will be a good one, even though it’s taking
some long hours to get started.”
Anna looks up from her screen and smiles. “I like what you’ve done in getting us organized,” she says.
“I hadn’t realized Micosoft Visio and Visible Analyst could help us this much with project management. I’ve
decided to do a PERT diagram for the data gathering portion of the project. It should help us plan our time and
work as a team on parallel activities.”
“Can I take a look at the PERT diagram?” asks Chip.
Anna shows him a screen with a PERT diagram on it (see Figure E3.1) and remarks, “This will help
immensely. It is much easier than planning haphazardly.”
“I notice that you have Gather Reports, Gather Records and Data Capture Forms, and Gather Qualita-
tive Documents as parallel tasks,” notes Chip, gazing at the screen.
“Yes,” replies Anna. “I thought that we would split up the time that it takes to gather the information.
We can also divide up the task of analyzing what we have learned.”
“I notice that you have a rather large number of days allocated for interviewing the users,” notes Chip.
“Yes,” replies Anna. “This activity also includes creating questions, sequencing them, and other tasks,
such as taking notes of the office environment and analyzing them. I’ve also assumed a standard of six pro-
ductive hours per day.”
“After we interview the users, we will want to create a problem definition for the system, listing the is-
sues and objectives,” continues Anna. “Once this is finished, we’ll have the users review it and assign
weights. When this is complete, the next step is to create a list of user requirements.”
“Sounds like a good plan,” Chip remarks after a thoughtful pause. “Should we get started with a ques-
tion list?”
Anna glances at her watch. “Not now, it’s getting late. I think we’ve made a lot of progress in setting
up our project. Let’s call it a day, or should I say evening? Remember, I got us tickets for the football game.”
Chip replies, “I haven’t forgotten. Let me get my coat, and we’ll walk over to the stadium together.”
Walking across campus later, Chip says, “I’m excited. It’s my first game here at CPU. What’s the team
mascot, anyway?”
“Chipmunks, of course,” says Anna.
“And the team colors?” Chip asks, as they enter the stadium.
“Blue and white,” Anna replies.
“Oh, that’s why everyone’s yelling, ‘Go Big Blue!’” Chip says, listening to the roar of the crowd.
“Precisely,” says Anna.
C, ,1
A, 4
B, 5
E 2
F, 4
D, 6
G, 15 I, 4
H, 14 J, 3
K, 15
20
3010 50 60 80 90
40 70
A Gather reports
B Gather records and data capture forms
C Gather qualitative documents
D Analyze reports
E Understand corporate culture
F Analyze records and forms
G Interview users
H Administer questionnaires
I Summarize interviews
J Summarize survey results
K Prototype system
FIGURE E3.1
A PERT diagram for Central
Pacific University that is used for
gathering information.
CHAPTER 3 • PROJECT MANAGEMENT 101
EXERCISES
E-1. Use Microsoft Visio or Visible Analyst to view the Gathering Information PERT diagram.
E-2. List all paths and calculate and determine the critical path for the Gathering Information PERT diagram.
E-3. Use Microsoft Visio or Visible Analyst to create the PERT diagram shown in Figure E3.2. It repre-
sents the activities involved in interviewing the users and observing their offices.
A, 1 B, 1 C, 2 E, 3
D, 1
8
F, 4
G, 2
H, 1
I, 2
10 20 30 40 60
70
80
50
Dummy
A
B
C
D
E
F
G
H
I
Write objectives
Determine whom to interview
Write questions
Prepare interviewee
Interview senior management
Interview operations management
Record and analyze observations
Summarize management interviews
Summarize operations interviews
FIGURE E3.2
A PERT diagram for Central
Pacific University that is used for
the interviewing users phase.
DurationPredecessorActivity
Determine overall prototype
screens and reports
Determine report and screen contents
Create report prototypes
Create screen prototypes
Obtain report prototype feedback
Obtain screen prototype feedback
Modify report prototypes
Modify screen prototypes
Obtain final approval
A
B
C
D
E
F
G
H
I
None
A
B
B
C
D
E
F
G, H
2
4
3
4
1
2
2
4
2
FIGURE E3.3
A list of activities and estimated
duration times for the CPU
project.
E-4. List all paths and calculate and determine the critical path for the Interviewing Users PERT diagram.
E-5. Use Visio or Visible Analyst to create a PERT diagram for creating system prototypes. The activity
information is shown in Figure E3.3.
E-6. Create the problem definition for the CPU case. Read the interview with Hy Perteks in the CPU case
found in Chapter 4 as well as the interviews found on the support Web site for Systems Analysis and
Design. Go to www.pearsonhighered.com/kendall and click the CPU Student Exercise link for the
8/e text. Then click the first link called CPU Interviews. You will need to read all five additional in-
terviews. There is a Next link in the lower right corner of the Web page to go to the next interview.
E-7. Write user requirements for the CPU case.
E-8. Design a test plan for the requirements created in Exercise E-7.
The exercises preceded by a www icon indicate value-added material is available from the Web site at
www.pearsonhighered.com/kendall. Students can download a sample Microsoft Visio, Visible Analyst, Microsoft
Project, or a Microsoft Access file that can be used to complete the exercises.
www.pearsonhighered.com/kendall
www.pearsonhighered.com/kendall
This page intentionally left blank
103
C H A P T E R 4
Information Gathering:
Interactive Methods
LEARNING OBJECTIVES
Once you have mastered the material in this chapter you will be able to:
1. Recognize the value of interactive methods for information gathering.
2. Construct interview questions to elicit human information requirements.
3. Structure interviews in a way that is meaningful to users.
4. Understand the concept of JAD and when to use it.
5. Write effective questions to survey users about their work.
6. Design and administer effective questionnaires.
There are three key interactive methods that you can use to elicit human
information requirements from organizational members.These three meth-
ods are interviewing, joint application design (JAD), and surveying people
through questionnaires. Although different in their implementation, these
methods have a great deal in common, too.The basis of their shared prop-
erties is talking with and listening to people in the organization to understand their interac-
tions with technology through a series of carefully composed questions.
Each of the three interactive methods for information gathering possesses its own estab-
lished process for you to follow in interacting with users. If followed, these systematic ap-
proaches will help ensure proper design and implementation of interviews, JAD workshops, and
questionnaires, as well as support insightful analysis of the resulting data. Unobtrusive meth-
ods (sampling, investigation, and observing a decision maker’s behavior and physical environ-
ment) that do not require the same degree of interactivity between analysts and users will be
covered in an upcoming chapter. By using interactive methods with unobtrusive methods you
will achieve a more complete portrait of the organization’s information requirements.
PA R T I I
Information
Requirements Analysis
INTERVIEWING
Before you interview someone else, you must in effect interview yourself. You need to know your
biases and how they will affect your perceptions. Your education, intellect, upbringing, emotions,
and ethical framework all serve as powerful filters for what you will be hearing in your interviews.
You need to think through the interview thoroughly before you go. Visualize why you are go-
ing, what you will ask, and what will make it a successful interview in your eyes. You must an-
ticipate how to make the interview fulfilling for the individual you interview, as well.
An information-gathering interview is a directed conversation with a specific purpose that
uses a question-and-answer format. In the interview you want to get the opinions of the interview-
ee and his or her feelings about the current state of the system, organizational and personal goals,
and informal procedures for interacting with information technologies.
104 PART II • INFORMATION REQUIREMENTS ANALYSIS
1. Read background material.
2. Establish interviewing objectives.
3. Decide whom to interview.
4. Prepare the interviewee.
5. Decide on question types and structure.
Steps in Planning the Interview
FIGURE 4.1
Steps the systems analyst follows
in planning the interview.
Above all, seek the opinions of the person you are interviewing. Opinions may be more im-
portant and more revealing than facts. For example, imagine asking the owner of a traditional
store who has recently added an online store how many customer refunds she typically gives for
Web transactions each week. She replies, “About 20 to 25 a week.” When you monitor the trans-
actions and discover that the average is only 10.5 per week, you might conclude that the owner
is overstating the facts and the problem.
Imagine instead that you ask the owner what her major concerns are and that she replies, “In
my opinion, customer returns of goods purchased over the Web are way too high.” By seeking
opinions rather than facts, you discover a key problem that the owner wants addressed.
In addition to opinions, you should try to capture the feelings of the interviewee. Remember
that the interviewee knows the organization better than you do. You can understand the organiza-
tion’s culture more fully by listening to the feelings of the respondent.
Goals are important information that can be gleaned from interviewing. Facts that you ob-
tain from hard data may explain past performance, but goals project the organization’s future. Try
to find out as many of the organization’s goals as possible from interviewing. You may not be able
to determine goals through any other data-gathering methods.
The interview is also a valuable time to explore key HCI (human–computer interaction) con-
cerns, including the ergonomic aspects, the system usability, how pleasing and enjoyable the sys-
tem is, and how useful it is in supporting individual tasks.
In the interview you are setting up a relationship with someone who is probably a stranger
to you. You need to build trust and understanding quickly, but at the same time you must main-
tain control of the interview. You also need to sell the system by providing needed information
to your interviewee. Do so by planning for the interview before you go so that conducting it is
second nature to you. Fortunately, effective interviewing can be learned. As you practice, you
will see yourself improving. Later in the chapter we discuss joint application design (JAD) (pro-
nounced as one word, jǎd, rhymes with add), which can serve as an alternative to one-on-one in-
terviewing in certain situations.
Five Steps in Interview Preparation
The five major steps in interview preparation are shown in Figure 4.1. These steps include a range
of activities from gathering basic background material to deciding who to interview.
READ BACKGROUND MATERIAL. Read and understand as much background information about
the interviewees and their organization as possible. This material can often be obtained on the
corporate Web site, from a current annual report, a corporate newsletter, or any publications sent
out to explain the organization to the public. Check the Internet for any corporate information
such as that in Standard and Poor’s.
As you read through this material, be particularly sensitive to the language the organizational
members use in describing themselves and their organization. What you are trying to do is build
up a common vocabulary that will eventually enable you to phrase interview questions in a way
that is understandable to your interviewee. Another benefit of researching your organization is to
maximize the time you spend in interviews; without such preparation you may waste time asking
general background questions.
ESTABLISH INTERVIEWING OBJECTIVES. Use the background information you gathered as well as
your own experience to establish interview objectives. There should be four to six key areas
concerning HCI, information processing, and decision-making behavior about which you will
want to ask questions. These areas include HCI concerns (the usefulness and usability of the
CHAPTER 4 • INFORMATION GATHERING: INTERACTIVE METHODS 105
Open-Ended Interview Questions
• What’s your opinion of the current state of business-to-business
ecommerce in your firm?
• What are the critical objectives of your department?
• Once the data are submitted via the Web site, how are they processed?
• Describe the monitoring process that is available online.
• What are some of the common data entry errors made in this department?
• What are the biggest frustrations you’ve experienced during the transition
to ecommerce?
FIGURE 4.2
Open-ended interview questions
allow the respondent open options
for responding. The examples
were selected from different
interviews and are not shown in
any particular order.
system; how it fits physical aspects; how it suits a user’s cognitive capabilities, whether it is
engaging or aesthetically pleasing; and whether using the system is rewarded with desired
consequences), information sources, information formats, decision-making frequency, qualities
of information, and decision-making style.
DECIDE WHOM TO INTERVIEW. When deciding whom to interview, include key people at all
levels who will be affected by the system in some manner. Strive for balance so that as many
users’ needs are addressed as possible. Your organizational contact will also have some ideas
about whom should be interviewed.
PREPARE THE INTERVIEWEE. Prepare the person to be interviewed by calling ahead or sending an
email message and allowing the interviewee time to think about the interview. If you are doing
an in-depth interview, it is permissible to email your questions ahead of time to allow your
interviewee time to think over his or her responses. Because there are many objectives to fulfill
in the interview (including building trust and observing the workplace), however, interviews
should typically be conducted in person and not via email. Interviews should be kept to
45 minutes or an hour at the most. No matter how much your interviewees seem to want to extend
the interview beyond this limit, remember that when they spend time with you, they are not doing
their work. If interviews go over an hour, it is likely that the interviewees will resent the intrusion,
whether or not they articulate their resentment.
DECIDE ON QUESTION TYPES AND STRUCTURE. Write questions to cover the key areas of HCI and
decision making that you discovered when you ascertained interview objectives. Proper
questioning techniques are the heart of interviewing. Questions have some basic forms you need
to know. The two basic question types are open-ended and closed. Each question type can
accomplish something a little different from the other, and each has benefits and drawbacks. You
need to think about the effect each question type will have.
It is possible to structure your interview in three different patterns: a pyramid structure, a fun-
nel structure, or a diamond structure. Each is appropriate under different conditions and serves a
different function, and each one is discussed later in this chapter.
Question Types
OPEN-ENDED QUESTIONS. Open-ended questions include those such as “What do you think
about putting all the managers on an intranet?” “Please explain how you make a scheduling
decision.” “In what ways does the system extend your capability to do tasks that would not be
possible otherwise?” Consider the term open-ended. “Open” actually describes the interviewee’s
options for responding. They are open. The response can be two words or two paragraphs. Some
examples of open-ended questions are found in Figure 4.2.
The benefits of using open-ended questions are numerous and include the following:
1. Putting the interviewee at ease.
2. Allowing the interviewer to pick up on the interviewee’s vocabulary, which reflects his or
her education, values, attitudes, and beliefs.
3. Providing richness of detail.
4. Revealing avenues of further questioning that may have gone untapped.
5. Making it more interesting for the interviewee.
6. Allowing more spontaneity.
106 PART II • INFORMATION REQUIREMENTS ANALYSIS
Bipolar Interview Questions
• Do you use the Web to provide information to vendors?
• Do you agree or disagree that ecommerce on the Web lacks security?
• Do you want to receive a printout of your account status every month?
• Does your Web site maintain a FAQ page for employees with payroll
questions?
• Is this form complete?
FIGURE 4.4
Bipolar interview questions are a
special kind of closed question.
The examples were selected from
different interviews and are not
shown in any particular order.
Closed Interview Questions
• How many times a week is the project repository updated?
• On average, how many calls does the call center receive monthly?
• Which of the following sources of information is most valuable to you?
° Completed customer complaint forms
° Email complaints from consumers who visit the Web site
° Face-to-face interaction with customers
° Returned merchandise
• List your top two priorities for improving the technology infrastructure.
• Who receives this input?
FIGURE 4.3
Closed interview questions limit
the respondent’s options. The
examples were selected from
different interviews and are not
shown in any particular order.
7. Making phrasing easier for the interviewer.
8. Using them in a pinch if the interviewer is caught unprepared.
As you can see, there are several advantages to using open-ended questions. There are, however,
also many drawbacks:
1. Asking questions that may result in too much irrelevant detail.
2. Possibly losing control of the interview.
3. Allowing responses that may take too much time for the amount of useful information
gained.
4. Potentially seeming that the interviewer is unprepared.
5. Possibly giving the impression that the interviewer is on a “fishing expedition” with no
real objective for the interview.
You must carefully consider the implications of using open-ended questions for interviewing.
CLOSED QUESTIONS. The alternative to open-ended questions is found in the other basic question
type: closed questions. Such questions are of the basic form “Is it easy to use the current system?”
and, “How many subordinates do you have?” The possible responses are closed to the
interviewee, because he or she can only reply with a finite number such as “None,” “One,” or
“Fifteen.” Some examples of closed questions can be found in Figure 4.3.
A closed question limits the response available to the interviewee. You may be familiar with
closed questions through multiple-choice exams in college. You are given a question and five re-
sponses, but you are not allowed to write down your own response and still be counted as having
correctly answered the question.
A special kind of closed question is the bipolar question. This type of question limits the in-
terviewee even further by only allowing a choice on either pole, such as yes or no, true or false,
agree or disagree. Examples of bipolar questions can be found in Figure 4.4.
The benefits of using closed questions of either type include the following:
1. Saving time.
2. Easily comparing interviews.
3. Getting to the point.
4. Keeping control over the interview.
5. Covering lots of ground quickly.
6. Getting to relevant data.
CHAPTER 4 • INFORMATION GATHERING: INTERACTIVE METHODS 107
The drawbacks of using closed questions are substantial, however. They include the following:
1. Being boring for the interviewee.
2. Failing to obtain rich detail (because the interviewer supplies the frame of reference for the
interviewee).
3. Missing main ideas for the preceding reason.
4. Failing to build rapport between interviewer and interviewee.
Thus, as the interviewer, you must think carefully about the question types you will use.
Both open-ended and closed questions have advantages and drawbacks, as shown in
Figure 4.5. Notice that choosing one question type over the other actually involves a trade-off; al-
though an open-ended question affords breadth and depth of reply, responses to open-ended ques-
tions are difficult to analyze.
PROBES. A third type of question is the probe or follow-up. The strongest probe is the simplest:
the question, “Why?” Other probes are “Can you give me an example of a time you did not find
the system trustworthy?” and “Will you elaborate on that for me?” Some examples of probing
questions can be found in Figure 4.6. The purpose of the probe is to go beyond the initial answer
to get more meaning, to clarify, and to draw out and expand on the interviewee’s point. Probes
may be either open-ended or closed questions.
It is essential to probe. Most beginning interviewers are reticent about probing and conse-
quently accept superficial answers. They are usually grateful that employees have granted inter-
views and feel somewhat obligated to accept unqualified statements politely.
Arranging Questions in a Logical Sequence
Just as there are two generally recognized ways of reasoning—inductive and deductive—there
are two similar ways of organizing your interviews. A third way combines both inductive and de-
ductive patterns.
ClosedOpen-Ended
Low
Low
Low
Much
Much
Difficult
High
High
High
Little
Little
EasyEase of Analysis
Reliability of Data
Efficient Use of Time
Precision of Data
Breadth and Depth
Interviewer Skill Required
FIGURE 4.5
Attributes of open-ended and
closed questions.
Probes
•
•
•
•
•
•
Why?
Give an example of how ecommerce has been integrated into your
business processes.
Please give an illustration of the security problems you are experiencing
with your online bill payment system.
You mentioned both an intranet and an extranet solution. Please give an
example of how you think each differs.
What makes you feel that way?
Tell me step by step what happens after a customer clicks the “Submit”
button on the Web registration form.
FIGURE 4.6
Probes allow the systems analyst
to follow up on questions to get
more detailed responses. The
examples were selected from
different interviews and are not
shown in any particular order.
108 PART II • INFORMATION REQUIREMENTS ANALYSIS
USING A PYRAMID STRUCTURE. Inductive organization of interview questions can be visualized
as having a pyramid shape. Using this form, the interviewer begins with very detailed, often
closed, questions. The interviewer then expands the topics by allowing open-ended questions and
more generalized responses, as shown in Figure 4.7.
A pyramid structure should be used if you believe your interviewee needs to warm up to the
topic. Using a pyramid structure for question sequencing is also useful when you want an ending
What
specifically is
the problem you
are experiencing
with your firewall?
Have you considered other methods
to improve the security of
corporate data?
What do you think would make
security more effective here?
In general, how do you feel about the security of
data versus the importance of Internet access?
Pyramid
structures
start with a
specific question …
… and end
with a
general
one.
FIGURE 4.7
Pyramid structure for interviewing
goes from specific to general
questions.
C O N S U L T I N G O P P O R T U N I T Y 4 . 1
Strengthening Your Question Types
Strongbodies, a large, local chain of sports clubs, has experienced
phenomenal growth in the past five years. Management would like
to refine its decision-making process for purchasing new body-
building equipment. Currently, managers listen to customers, attend
trade shows, look at advertisements, and put in requests for new
equipment purchases based on their subjective perceptions. These
are then approved or denied by Harry Mussels.
Harry is the first person you will interview. He is a 37-year-old
division manager who runs five area clubs. He travels all over the
city to their widespread locations. He keeps an office at the East lo-
cation, although he is there less than a quarter of the time.
In addition, when Harry is present at a club, he is busy an-
swering business-related phone calls, solving on-the-spot prob-
lems presented by managers, and interacting with club members.
His time is short, and to compensate for that he has become an
extremely well-organized, efficient divisional manager. He can-
not grant you a lot of interview time. However, his input is im-
portant, and he feels he would be the main beneficiary of the
proposed system.
What type of interview question might be most suitable for
your interview with Harry? Why is this type most appropriate? How
will your choice of question type affect the amount of time you
spend in preparation for interviewing Harry? Write 5 to 10 ques-
tions of this type. What other techniques might you use to supple-
ment information unavailable through that type of question? Write
a paragraph to explain.
CHAPTER 4 • INFORMATION GATHERING: INTERACTIVE METHODS 109
determination about the topic. Such is the case in the final question, “In general, how do you feel
about the security of data versus the importance of Internet access?”
USING A FUNNEL STRUCTURE. In the second kind of structure, the interviewer takes a deductive
approach by beginning with generalized, open-ended questions and then narrowing the possible
responses by using closed questions. This interview structure can be thought of as funnel shaped,
as that depicted in Figure 4.8. Using the funnel structure method provides an easy, nonthreatening
way to begin an interview. A funnel-shaped question sequence is also useful when the interviewee
feels emotional about the topic and needs freedom to express those emotions.
USING A DIAMOND-SHAPED STRUCTURE. Often a combination of the two structures, resulting in
a diamond-shaped interview structure, is best. This structure entails beginning in a very specific
way, then examining general issues, and finally coming to a very specific conclusion, as shown
in Figure 4.9.
The interviewer begins with easy, closed questions that provide a warm-up to the interview
process. In the middle of the interview, the interviewee is asked for opinions on broad topics that
obviously have no “right” answer. The interviewer then narrows the questions again to get spe-
cific questions answered, thus providing closure for both the interviewee and the interviewer. The
diamond structure combines the strengths of the other two approaches but has the disadvantage
of taking longer than either other structure.
The end of the interview is a natural place to ask one key question: “Is there anything we
haven’t touched on that you feel is important for me to know?” Considered a formula question by
the interviewee most of the time, the response will often be “No.” You are interested in the other
times, when this question opens the proverbial floodgates and much new data are presented,
though.
As you conclude the interview, summarize and provide feedback on your overall impres-
sions. Inform the interviewee about the subsequent steps to take and what you and other team
members will do next.Ask the interviewee with whom you should talk next. Set up future appoint-
ment times for follow-up interviews, thank the interviewee for his or her time, and shake hands.
Writing the Interview Report
Although the interview itself is complete, your work on the interview data is just beginning. You
need to capture the essence of the interview through a written report. It is imperative that you
write the interview report as soon as possible after the interview. This step is another way you can
ensure quality of interview data. The longer you wait to write up your interview, the more sus-
pect the quality of your data becomes.
What items will be available for
purchase on the Web site?
What are your reactions to the new
Web-based procurement system?
Is there any essential
item that has been
excluded from
the site?
Funnel structures
begin with a
general question …
… and end with
a specific one.
What departments are involved in implementing it?
FIGURE 4.8
Funnel structure for interviewing
begins with broad questions, then
funnels to specific questions.
110 PART II • INFORMATION REQUIREMENTS ANALYSIS
C O N S U L T I N G O P P O R T U N I T Y 4 . 2
Skimming the Surface
You are about to leave SureCheck Dairy after a preliminary
tour when another member of your systems analysis team calls
you at the dairy to say he cannot make his interview appointment
with the plant manager because of illness. The plant manager is
extremely busy, and you want to keep his enthusiasm for the proj-
ect going by doing things as scheduled. You also realize that with-
out the initial interview data, the rest of your data gathering will
be slowed. Although you have no interview questions prepared,
you make the decision to go ahead and interview the plant man-
ager on the spot.
You have learned that SureCheck is interested in processing its
own data on quantities and kinds of dairy products sold so that its
people can use that information to better control production of the
company’s large product line (it includes whole, skim, 2 percent,
and 1 percent milk, half-and-half, cottage cheese, yogurt, and
frozen novelties). Sales managers are currently sending their sales
figures to corporate headquarters, 600 miles away, and processing
turnaround seems slow. You will base your ad-libbed questions on
what you have just found out on the tour.
In the few minutes before your interview begins, decide on a
structure for it: funnel, pyramid, or diamond. In a paragraph, justify
why you would proceed with the interview structure you have cho-
sen based on the unusual context of this interview. Write a series of
questions and organize them in the structure you have chosen.
What five
kinds of information
are tracked by the free
Web site usage service you use?
What are the promotional activities you
feature on your Web site in exchange for this service?
What is the value of the usage information to you as a Webmaster?
What are two surprising items concerning end user
behavior on your site that you have discovered
by using this service?
Are “cookies” a better
way to measure
end user site
usage?
Diamond
structures begin
with a specific
question …
… move toward
general
questions …
… and end with a
specific question.
FIGURE 4.9
Diamond-shaped structure for
interviewing combines the
pyramid and funnel structures.
After this initial summary, go into more detail, noting main points of the interview and your
own opinions. Review the interview report with the respondent at a follow-up meeting. This step
helps clarify the meaning the interviewee had in mind and lets the interviewee know that you
are interested enough to take the time to understand his or her point of view and perceptions.
CHAPTER 4 • INFORMATION GATHERING: INTERACTIVE METHODS 111
JOINT APPLICATION DESIGN
No matter how adept you become as an interviewer, you will inevitably experience situations in
which one-on-one interviews do not seem to be as useful as you would like. Personal interviews
are time consuming and subject to error, and their data are prone to misinterpretation. An alterna-
tive approach to interviewing users one by one, called joint application design (JAD), was devel-
oped by IBM. The motivation for using JAD is to cut the time (and hence the cost) required by
personal interviews, to improve the quality of the results of information requirements assessment,
and to create more user identification with new information systems as a result of the participa-
tive processes.
Although JAD can be substituted for personal interviews at any appropriate juncture during
the SDLC, it has usually been employed as a technique that allows you, as a systems analyst, to
accomplish requirements analysis and to design the user interface jointly with users in a group
setting. The many intricacies of this approach can only be learned in a paid seminar demonstrat-
ing proprietary methods. We can, however, convey enough information about JAD here to make
you aware of some of its benefits and drawbacks in comparison with one-on-one interviews.
Conditions That Support the Use of JAD
The following list of conditions will help you decide when the use of JAD may be fruitful. Con-
sider using joint application design when:
1. User groups are restless and want something new, not a standard solution to a typical
problem.
2. The organizational culture supports joint problem-solving behaviors among multiple levels
of employees.
3. Analysts forecast that the number of ideas generated via one-on-one interviews will not be
as plentiful as the number of ideas possible from an extended group exercise.
4. Organizational workflow permits the absence of key personnel during a two-to-four-day
block of time.
Who Is Involved?
Joint application design sessions include a variety of participants—analysts, users, executives,
and so on—who will contribute differing backgrounds and skills to the sessions. Your primary
concern here is that all project team members are committed to the JAD approach and become in-
volved. Choose an executive sponsor, a senior person who will introduce and conclude the JAD
session. Preferably, select an executive from the user group who has some sort of authority over
the IS people working on the project. This person will be an important, visible symbol of organi-
zational commitment to the systems project.
At least one IS analyst should be present, but the analyst usually takes a passive role, unlike
traditional interviewing in which the analyst controls the interaction. As the project analyst, you
should be present during JAD to listen to what users say and what they require. In addition, you
will want to give an expert opinion about any disproportionate costs of solutions proposed dur-
ing the JAD session itself. Without this kind of immediate feedback, unrealistic solutions with ex-
cessive costs may creep into the proposal and prove costly to discourage later on.
From eight to a dozen users can be chosen from any rank to participate in JAD sessions. Try
to select users who can articulate what information they need to perform their jobs as well as what
they desire in a new or improved computer system.
The session leader should not be an expert in systems analysis and design but rather someone
who has excellent communication skills to facilitate appropriate interactions. Note that you do not
want to use a session leader who reports to another person in the group. To avoid this possibility,
an organization may want to retain an outside management consultant to serve as session leader.
The point is to get a person who can bring the group’s attention to bear on important systems is-
sues, satisfactorily negotiate and resolve conflicts, and help group members reach a consensus.
Your JAD session should also include one or two observers who are analysts or technical ex-
perts from other functional areas to offer technical explanations and advice to the group during
the sessions. In addition, one scribe from the IS department should attend the JAD sessions to for-
mally write down everything that is done.
112 PART II • INFORMATION REQUIREMENTS ANALYSIS
H Y P E R C A S E ® E X P E R I E N C E 4 . 1
“ Well, I did warn you that things weren’t always smooth here
at MRE. By now you’ve met many of our key employees and are
starting to understand the ‘lay of the land.’Who would have thought
that some innocent decisions about systems, like whether to pur-
chase a COMTEX or Shiroma, would cause such hostility? Well,
live and learn, I always say. At least now you’ll know what you’re
up against when you have to start recommending software and
hardware!
“It’s funny that not all questions are created equal. I myself fa-
vor asking open-ended questions, but when I have to answer them,
it is not always easy.
HYPERCASE Questions
1. Using the interview questions posed in HyperCase, give five
examples of open-ended questions and five examples of
closed questions. Explain why your examples are correctly
classified as either open-ended or closed question types.
2. List three probing questions that are part of the Daniel Hill
interview. In particular, what did you learn by following up
on the questions you asked Daniel?
3. List three probing questions that are part of the Snowden
Evans interview. In particular, what did you learn by
following up on the questions you asked Snowden?
FIGURE 4.HC1
Pointing to a question in HyperCase will reveal an answer.
Where to Hold JAD Meetings
If at all possible, we recommend holding the two-to-four-day sessions off-site, away from the or-
ganization, in comfortable surroundings. Some groups use executive centers or even group deci-
sion support facilities that are available at major universities. The idea is to minimize the daily
distractions and responsibilities of the participants’ regular work. The room itself should comfort-
ably hold the number of people invited. Minimal presentation support equipment includes two
overhead projectors, a whiteboard, a flip chart, and easy access to a copier. Group decision sup-
port rooms will also provide networked PCs, a projection system, and software written to facili-
tate group interaction while minimizing unproductive group behaviors.
Schedule your JAD session when all participants can commit to attending. Do not hold the
sessions unless everyone who has been invited can actually attend. This rule is critical to the suc-
cess of the sessions. Ensure that all participants receive an agenda before the meeting, and con-
CHAPTER 4 • INFORMATION GATHERING: INTERACTIVE METHODS 113
sider holding an orientation meeting for a half day one week or so before the workshop so that
those involved know what is expected of them. Such a premeeting allows you to move rapidly
and act confidently once the actual meeting is convened.
Accomplishing a Structured Analysis of Project Activities
IBM recommends that the JAD sessions examine these points in the proposed systems project:
planning, receiving, receipt processing/tracking, monitoring and assigning, processing, record-
ing, sending, and evaluating. For each topic, the questions who, what, how, where, and why
should also be asked and answered. Clearly, ad hoc interactive systems such as decision support
systems and other types of systems dependent on decision-maker style (including prototype sys-
tems) are not as easily analyzed with the structured approach of JAD.
As the analyst involved with the JAD sessions, you should receive the notes of the scribe and
prepare a specifications document based on what happened at the meeting. Systematically pre-
sent the management objectives as well as the scope and boundaries of the project. Specifics of
the system, including details on screen and report layouts, should also be included.
Potential Benefits of Using JAD in Place of Traditional Interviewing
There are four major potential benefits that you, the users, and your systems analysis team should
consider when you weigh the possibilities of using joint application design. The first potential
benefit is time savings over traditional one-on-one interviews. Some organizations have esti-
mated that JAD sessions have provided a 15 percent time savings over the traditional approach.
Hand-in-hand with time savings is the rapid development possible via JAD. Because user in-
terviews are not accomplished serially over a period of weeks or months, the development can
proceed much more quickly.
A third benefit to weigh is the possibility of improved ownership of the information system.
As analysts, we are always striving to involve users in meaningful ways and to encourage users
to take early ownership of the systems we are designing. Due to its interactive nature and high
visibility, JAD helps users become involved early in systems projects and treats their feedback
seriously. Working through a JAD session eventually helps reflect user ideas in the final design.
A final benefit of participating in JAD sessions is the creative development of designs. The
interactive character of JAD has a great deal in common with brainstorming techniques that gen-
erate new ideas and new combinations of ideas because of the dynamic and stimulating environ-
ment. Designs can evolve through facilitated interactions, rather than in relative isolation.
Potential Drawbacks of Using JAD
There are three drawbacks or pitfalls that you should also weigh when making a decision on
whether to do traditional one-on-one interviews or to use JAD. The first drawback is that JAD
requires the commitment of a large block of time from all participants. Because JAD requires a
C O N S U L T I N G O P P O R T U N I T Y 4 . 3
A Systems Analyst, I Presume?
“Know what I think of the work the last systems analyst team
did? The printouts created are a jungle. To figure out the cost of
raw materials to us, I have to cut my way through the overgrowth
of data, hacking my path with a pen. I cross out everything that’s
irrelevant. Sometimes I physically rip out the excess vegetation
until I reach the numbers I need,” says Henry Stanley, account-
ing supervisor for Zenith Glass Company. As you interview him,
he points unhappily to an untidy stack of mutilated printouts
sprouting beside his desk.
Identify the overriding metaphor Henry is using to describe the
printouts he is receiving and the accessibility of information in
them. In a paragraph, describe how this step helps you understand
Henry’s attitude toward any work proposed by your systems analy-
sis team. In a paragraph, adopt Henry’s metaphor and extend it in a
more positive sense during your interview with him.
two-to-four-day commitment, it is not possible to do any other activities concurrently or to time-
shift any activities, as is typically done in one-on-one interviewing.
A second pitfall occurs if preparation for the JAD sessions is inadequate in any regard or if
the follow-up report and documentation of specifications is incomplete. In these instances result-
ing designs could be less than satisfactory. Many variables need to come together correctly for
JAD to be successful. Conversely, many things can go wrong. The success of designs resulting
from JAD sessions is less predictable than that achieved through standard interviews.
Finally, the necessary organizational skills and organizational culture may not be suffi-
ciently developed to enable the concerted effort required to be productive in a JAD setting. In
the end you will have to judge whether the organization is truly committed to, and prepared for,
this approach.
USING QUESTIONNAIRES
The use of questionnaires is an information-gathering technique that allows systems analysts to
study attitudes, beliefs, behavior, and characteristics of several key people in the organization who
may be affected by the current and proposed systems. Attitudes are what people in the organization
say they want (in a new system, for instance); beliefs are what people think is actually true; behav-
ior is what organizational members do; and characteristics are properties of people or things.
Responses gained through questionnaires (also called surveys) using closed questions can be
quantified. If you are surveying people via email or the Web, you can use software to turn elec-
tronic responses directly into data tables for analysis using a spreadsheet application or statistical
software packages. Responses to questionnaires using open-ended questions are analyzed and in-
terpreted in other ways. Answers to questions on attitudes and beliefs are sensitive to the word-
ing chosen by the systems analyst.
Through the use of questionnaires, the analyst may be seeking to quantify what was found in
interviews. In addition, questionnaires may be used to determine how widespread or limited a sen-
timent expressed in an interview really is. Conversely, questionnaires can be used to survey a large
sample of system users to sense problems or raise important issues before interviews are scheduled.
Throughout this chapter, we compare and contrast questionnaires with interviews. There are
many similarities between the two techniques, and perhaps the ideal would be to use them in con-
junction with each other, either following up unclear questionnaire responses with an interview or
designing the questionnaire based on what is discovered in the interview. Each technique, however,
has its own specific functions, and it is not always necessary or desirable to use both.
Planning for the Use of Questionnaires
At first glance questionnaires may seem to be a quick way to gather massive amounts of data
about how users assess the current system, about what problems they are experiencing with their
work, and about what people expect from a new or modified system. Although it is true that you
can gather a lot of information through questionnaires without spending time in face-to-face in-
terviews, developing a useful questionnaire takes extensive planning time in its own right. When
you decide to survey users via email or the Web, you face additional planning considerations con-
cerning confidentiality, authentication of identity, and problems of multiple responses.
You must first decide what you are attempting to gain through using a survey. For instance,
if you want to know what percentage of users prefers a FAQ page as a means of learning about
new software packages, a questionnaire might be the right technique. If you want an in-depth
analysis of a manager’s decision-making process, an interview is a better choice.
Here are some guidelines to help you decide whether the use of questionnaires is appropri-
ate. Consider using questionnaires if:
1. The people you need to question are widely dispersed (different branches of the same
corporation).
2. A large number of people are involved in the systems project, and it is meaningful to know
what proportion of a given group (for example, management) approves or disapproves of a
particular feature of the proposed system.
3. You are doing an exploratory study and want to gauge overall opinion before the systems
project is given any specific direction.
114 PART II • INFORMATION REQUIREMENTS ANALYSIS
4. You wish to be certain that any problems with the current system are identified and
addressed in follow-up interviews.
Once you have determined that you have good cause to use a questionnaire and have pin-
pointed the objectives to be fulfilled through its use, you can begin formulating questions.
Writing Questions
The biggest difference between the questions used for most interviews and those used on ques-
tionnaires is that interviewing permits interaction between the questions and their meanings. In
an interview the analyst has an opportunity to refine a question, define a muddy term, change the
course of questioning, respond to a puzzled look, and generally control the context.
Few of these opportunities are possible on a questionnaire. Thus, for the analyst, questions
must be transparently clear, the flow of the questionnaire cogent, the respondent’s questions an-
ticipated, and the administration of the questionnaire planned in detail. (A respondent is the per-
son who responds to or answers the questionnaire.)
The basic question types used on the questionnaire are open-ended and closed, as discussed
for interviewing. Due to the constraints placed on questionnaires, some additional discussion of
question types is warranted.
OPEN-ENDED QUESTIONS. Recall that open-ended questions (or statements) are those that leave
all possible response options open to the respondent. For example, open-ended questions on a
questionnaire might read, “Describe any problems you are currently experiencing with output
reports” or “In your opinion, how helpful are the user manuals for the current system’s accounting
application?”
When you write open-ended questions for a questionnaire, anticipate what kind of response
you will get. For instance, if you ask a question such as, “How do you feel about the system?” the
responses are apt to be too broad for accurate interpretation or comparison. Therefore, even when
you write an open-ended question, it must be narrow enough to guide respondents to answer in a
specific way. (Examples of open-ended questions can be found in Figure 4.10.)
Open-ended questions are particularly well suited to situations in which you want to get at
organizational members’ opinions about some aspect of the system, whether product or process.
In such cases you will want to use open-ended questions when it is impossible to list effectively
all the possible responses to the question.
CLOSED QUESTIONS. Recall that closed questions (or statements) are those that limit or close the
response options available to the respondent. For example, in Figure 4.11 the statement in
question 23 (“Below are the six software packages currently available. Please check the software
package(s) you personally use most frequently”) is closed. Notice that respondents are not asked
why the package is preferred, nor are they asked to select more than one, even if that is a more
representative response.
Closed questions should be used when the systems analyst is able to list effectively all the
possible responses to the question and when all the listed responses are mutually exclusive, so
that choosing one precludes choosing any of the others.
Use closed questions when you want to survey a large sample of people. The reason becomes
obvious when you start imagining how the data you are collecting will look. If you use only open-
ended questions for hundreds of people, correct analysis and interpretation of their responses be-
comes impossible without the aid of a computerized content analysis program.
There are trade-offs involved in choosing either open-ended or closed questions for use on
questionnaires. Figure 4.12 summarizes these trade-offs. Notice that responses to open-ended
questions can help analysts gain rich, exploratory insights as well as breadth and depth on a topic.
Although open-ended questions can be written easily, responses to them are difficult and time
consuming to analyze.
When we refer to the writing of closed questions with either ordered or unordered answers,
we often refer to the process as scaling. The use of scales in surveys is discussed in detail in a later
section.
WORD CHOICE. Just as with interviews, the language of questionnaires is an extremely important
aspect of their effectiveness. Even if the systems analyst has a standard set of questions
CHAPTER 4 • INFORMATION GATHERING: INTERACTIVE METHODS 115
116 PART II • INFORMATION REQUIREMENTS ANALYSIS
concerning systems development, it is wise to write them to reflect the business’s own
terminology.
Respondents appreciate the efforts of someone who bothers to write a questionnaire reflect-
ing their own language usage. For instance, if the business uses the term supervisors instead of
managers, or units rather than departments, incorporating the preferred terms in the questionnaire
helps respondents relate to the meaning of the questions. Responses will be easier to interpret ac-
curately, and respondents will be more enthusiastic overall.
To check whether language used on the questionnaire is that of the respondents, try some
sample questions on a pilot (test) group. Ask them to pay particular attention to the appropriate-
ness of the wording and to change any words that do not ring true.
Here are some guidelines to use when choosing language for your questionnaire:
1. Use the language of respondents whenever possible. Keep wording simple.
2. Work at being specific rather than vague in wording. Avoid overly specific questions as well.
53. What are the most frequent problems you
experience with computer output?A.
B.
C.
54. Of the problems you listed above, what is the single
most troublesome?
55. Why?
Open-ended
questions can
ask the
respondent
for lists …
… or detailed
responses …
… or short
answers.
Below are questions about yourself. Please fill in the
blanks to the best of your ability.67. How long have you worked for this company?Years and Months68. How long have you worked in the same industry?Years and Months69. In what other industries have you worked?
FIGURE 4.10
Open-ended questions used for
questionnaires.
CHAPTER 4 • INFORMATION GATHERING: INTERACTIVE METHODS 117
Answer questions 23 and 24 by checking the appropriate box.23. Below are the six software packages currently
available. Please check the software package(s)
you personally use most frequently.[ ] Microsoft Excel [ ] Microsoft Access
[ ] Microsoft PowerPoint [ ] Microsoft Windows Live Mail
[ ] Oracle SCM [ ] Visible Analyst24. “The sales figures are usually late.”[ ] Agree
[ ] DisagreeAnswer questions 25 and 26 by circling the appropriate number.
25. “When the sales figures are prepared by computer data
services they are late.”
Never Rarely Sometimes Often Always
1 2
3
4 5
Answer questions 45–48 by circling the appropriate response. 45. The division I am currently in is called
Investments
Operations
Marketing
46. My educational background can best be described as High School
Some College
Bachelor’s Degree Master’s Degree or HigherMy gender is
Male
Female
Closed questions
may require the
respondent to
check a box …
… or circle a
number …
… or circle the
answer itself.
FIGURE 4.11
Closed questions on
questionnaires help ensure
responses.
Open-Ended Closed
Slow Fast
High Low
High Low
Easy Difficult
Difficult Easy
Speed of Completion
Exploratory Nature
Breadth and Depth
Ease of Preparation
Ease of Analysis
FIGURE 4.12
Trade-offs between the use of
open-ended and closed questions
on questionnaires.
118 PART II • INFORMATION REQUIREMENTS ANALYSIS
3. Keep questions short.
4. Do not patronize respondents by talking down to them through low-level language choices.
5. Avoid bias in wording. Avoiding bias also means avoiding objectionable questions.
6. Target questions to the correct respondents (that is, those who are capable of responding).
Don’t assume too much knowledge.
7. Ensure that questions are technically accurate before including them.
8. Use software to check whether the reading level is appropriate for the respondents.
Using Scales in Questionnaires
Scaling is the process of assigning numbers or other symbols to an attribute or characteristic for
the purpose of measuring that attribute or characteristic. Scales are often arbitrary and may not
be unique. For example, temperature is measured in a number of ways; the two most common are
the Fahrenheit scale (where water freezes at 32 degrees and boils at 212 degrees) and the Celsius
scale (where freezing occurs at 0 degrees and boiling at 100 degrees).
MEASUREMENT. There are two different forms of measurement scales commonly used by
systems analysts:
1. nominal scales and
2. interval scales.
Nominal scales are used to classify things. A question such as:
What type of software do you use the most?
1 � A Word Processor
2 � A Spreadsheet
3 � A Database
4 � An Email Program
uses a nominal scale. Obviously, nominal scales are the weakest forms of measurement. Gener-
ally, all the analyst can do with them is obtain totals for each classification.
Interval scales possess the characteristic that the intervals between each of the numbers are
equal. Due to this characteristic, mathematical operations can be performed on the questionnaire
data, resulting in a more complete analysis. Examples of interval scales are the Fahrenheit and
Celsius scales, which measure temperature.
The foregoing example of the Information Center is definitely not that of an interval scale,
but by anchoring the scale on either end, the analyst may want to assume the respondent perceives
the intervals to be equal:
How useful is the support given by the Technical Support Group?
Not Useful at All Extremely Useful
1 2 3 4 5
If the systems analyst makes this assumption, more quantitative analysis is possible.
VALIDITY AND RELIABILITY. There are two measures of performance in constructing scales:
validity and reliability. The systems analyst should be aware of these concerns.
Validity is the degree to which the question measures what the analyst intends to measure.
For example, if the purpose of the questionnaire is to determine whether the organization is ready
for a major change in computer operations, do the questions measure that?
Reliability measures consistency. If the questionnaire was administered once and then again
under the same conditions and if the same results were obtained both times, the instrument is said
to have external consistency. If the questionnaire contains subparts and these parts have equiva-
lent results, the instrument is said to have internal consistency. Both external and internal consis-
tency are important.
CHAPTER 4 • INFORMATION GATHERING: INTERACTIVE METHODS 119
CONSTRUCTING SCALES. The actual construction of scales is a serious task. Careless construction
of scales can result in one of the following problems:
1. Leniency.
2. Central tendency.
3. Halo effect.
Leniency is a problem caused by respondents who are easy raters. A systems analyst can
avoid the problem of leniency by moving the “average” category to the left (or right) of center.
Central tendency is a problem that occurs when respondents rate everything as average. The
analyst can improve the scale (1) by making the differences smaller at the two ends, (2) by ad-
justing the strength of the descriptors, or (3) by creating a scale with more points.
The halo effect is a problem that arises when the impression formed in one question carries
into the next question. For example, if you are rating an employee about whom you have a very
favorable impression, you may give a high rating in every category or trait, regardless of whether
or not it is a strong point of the employee’s. The solution is to place one trait and several employ-
ees on each page, rather than one employee and several traits on a page.
Designing the Questionnaires
Many of the same principles that are relevant to the design of forms for data input (as covered in
Chapter 12) are important here as well. Although the intent of the questionnaire is to gather infor-
mation on attitudes, beliefs, behavior, and characteristics whose impact may substantially alter
users’work, respondents are not always motivated to respond. Remember that organizational mem-
bers as a whole tend to receive too many surveys, many of which are often ill-conceived and trivial.
A well-designed, relevant questionnaire can help overcome some of this resistance to re-
spond. Here are some rules for designing a good questionnaire:
1. Allow ample white space.
2. Allow ample space to write or type in responses.
3. Make it easy for respondents to clearly mark their answers.
4. Be consistent in style.
When you design questionnaires for the Web, apply the same rules you use when designing
paper questionnaires. Most software packages allow you to insert one of the commonly used data
entry formats shown in Figure 4.13. Following the four guidelines should help you gain a better
response rate to the questionnaire.
One-line text box
Name PurposeAppearance
Scrolling text box
Check box
Radio button
Drop-down menu
Push button
Used to obtain a small amount of text and
limit the answer to a few words
Used to obtain one or more paragraphs of text
Used to obtain a yes-no answer (e.g., Do you
wish to be included on the mailing list?)
Used to obtain a yes-no or true-false answer
Used to obtain more consistent results
(Respondent is able to choose the appropriate
answer from a predetermined list [e.g., a list of
state abbreviations])
Most often used for an action (e.g., a respondent
pushes a button marked “Submit” or “Clear”)
FIGURE 4.13
When designing a Web survey,
keep in mind that there are
different ways to capture
responses.
120 PART II • INFORMATION REQUIREMENTS ANALYSIS
C O N S U L T I N G O P P O R T U N I T Y 4 . 4
The Unbearable Questionnaire
“I’m going to go into a depression or at least a slump if someone
doesn’t figure this out soon,” say Penny Stox, office manager for
Carbon, Carbon, & Rippy, a large brokerage firm. Penny is sitting
across a conference table from you and two of her most productive
account executives, By Lowe and Sal Hy. You are all mulling over
the responses to a questionnaire that has been distributed among the
firm’s account executives, which is shown in Figure 4.C1.
“We need a crystal ball to understand these,” By and Sal call
out together.
“Maybe it reflects some sort of optimistic cycle, or some-
thing,” Penny says as she reads more of the responses. “Who de-
signed this gem, anyway?”
“Rich Kleintz,” By and Sal call out in unison.
“Well, as you can see, it’s not telling us anything!” Penny
exclaims.
Penny and her staff are dissatisfied with the responses they
have received on the unbearable questionnaire, and they feel that
the responses are unrealistic reflections of the amount of informa-
tion account executives want. In a paragraph, state why these prob-
lems are occurring. On a separate sheet, change the scaling of the
questions to avoid these problems.
Circle the appropriate number for each source of information described.
1. Industry Reports
AboutLess
the Same
More
1 2 3 4 52. Trend Analysis
AboutLess
the Same
More
1 2 3 4 53. Computer-Generated Graphs
AboutLess
the Same
More
1 2 3 4 54. Investment Advisory Services
AboutLess
the Same
More
1 2 3 4 5
5. Point and Figure Charts
AboutLess
the Same
More
1
2
3
4
5
6. Computerized Portfolio Analysis
AboutLess
the Same
More
1
2
3
4
5
7. Hot Tips
AboutLess
the Same
More
1
2
3
4
5
We need to
change this
questionnaire.
-Penny
FIGURE 4.C1
Questionnaire developed for the brokerage firm of Carbon, Carbon, & Rippy by Rich Kleintz.
CHAPTER 4 • INFORMATION GATHERING: INTERACTIVE METHODS 121
QUESTION ORDER. There is no best way to order questions on the questionnaire. Once again, as you
order questions, you must think about your objectives in using the questionnaire and then determine
the function of each question in helping you to achieve your objectives. It is also important to see the
questionnaire through the respondent’s eyes. Some guidelines for ordering questions are:
1. Place questions that are important to respondents first.
2. Cluster items of similar content together.
3. Introduce less controversial questions first.
You want respondents to feel as unthreatened by and interested in the questions being asked as
possible, without getting overwrought about a particular issue.
C O N S U L T I N G O P P O R T U N I T Y 4 . 5
Order in the Courts
“I love my work,” Tennys says, beginning the interview with a
volley. “It’s a lot like a game. I keep my eye on the ball and never
look back,” he continues. Tennyson “Tennys” Courts is a manager
for Global Health Spas, Inc., which has popular health and recre-
ation spas worldwide.
“Now that I’ve finished my MBA, I feel like I’m on top of the
world with Global,” Tennys says. “I think I can really help this out-
fit shape up with its computers and health spas.”
Tennys is attempting to help your systems group, which is devel-
oping a system to be used by all 80 outlets (where currently each group
handles its paperwork in its own way). “Can I bounce this off you?”
he asks Terri Towell, a member of your team of systems analysts. “It’s
a questionnaire I designed for distribution to all spa managers.”
Ever the good sport, Terri tells Tennys that she’d love to take a look
at the form. But back in the office, Terri puts the ball in your court.
Systematically critique Tennys’s technique as depicted in Figure
4.C2, and explain to him point by point what it needs to be a match-
less questionnaire with a winning form. Building on your critique,
tell Tennys what he should do to rewrite the form as a Web survey
instead.
QUESTIONNAIRE FOR ALL MANAGERS OF HEALTH SPAS
***URGENT***FILL OUT IMMEDIATELY AND RETURN
PERSONALLY TO YOUR DIVISION MANAGER. YOUR NEXT
PAYCHECK WILL BE WITHHELD UNTIL IT IS CONFIRMED
THAT YOU HAVE TURNED THIS IN.
In 10 words or fewer, what complaints have you lodged about
the current computer system in the last six months to a year?
Are there others who feel the same way in your outlet as you
do? Who? List their names and positions.
1. 2.
3. 4.
5.
7.
What is the biggest problem you have when communicating
your information requirements to headquarters? Describe it
briefly.
How much computer downtime did you experience last year?
1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10 –
Is there any computer equipment you never use?
Description Serial Number
Do you want it removed? Agree Neutral Disagree
In your opinion, what’s next as far as computers and Global
Health Spas are concerned?
Thanks for filling this out. • • • • • • • • • • • • • • • •
Terri
Please help
me improve this
form.
Tennys
FIGURE 4.C2
Questionnaire developed for managers of Global Health Spas by Tennys Courts.
122 PART II • INFORMATION REQUIREMENTS ANALYSIS
Administering Questionnaires
RESPONDENTS. Deciding who will receive the questionnaire is handled in conjunction with the
task of setting up objectives for its results. Sampling, which is covered in Chapter 5, helps the
systems analyst to determine what sort of representation is necessary and hence what kind of
respondents should receive the questionnaire.
Recipients are often chosen as representative because of their rank, length of service with the
company, job duties, or special interest in the current or proposed system. Be sure to include
enough respondents to allow for a reasonable sample in the event that some questionnaires are
not returned or some response sheets are incorrectly completed and thus must be discarded.
METHODS OF ADMINISTERING THE QUESTIONNAIRE. The systems analyst has several options for
administering the questionnaire, and the choice of administration method is often determined by
the existing business situation. Options for administering the questionnaire include the following:
1. Convening all concerned respondents together at one time.
2. Personally handing out blank questionnaires and taking back completed ones.
3. Allowing respondents to self-administer the questionnaire at work and drop it in a centrally
located box.
4. Mailing questionnaires to employees at branch sites and supplying a deadline, instructions,
and return postage.
5. Administering the questionnaire electronically either via email or on the Web.
Each of these five methods has advantages and disadvantages. Most commonly, respondents
are allowed to self-administer the questionnaire. Response rates with this method are a little lower
than with the other methods, because people may forget about the form, lose it, or purposely ig-
nore it. Self-administration, however, allows people to feel that their anonymity is ensured and
may result in less guarded answers from some respondents. Both email and Web surveys fall into
the category of self-administered questionnaires.
Administering the questionnaire electronically, either via email or posted on the Web, is one
way to quickly reach current system users. Costs of duplication are minimized. In addition, re-
sponses can be made at the convenience of the respondent and then can be automatically collected
and stored electronically. Some software permits respondents to begin answering a survey, save
their answers, and return to it for completion if they are interrupted. Reminders to respondents can
be easily and inexpensively sent via email, as can notifications to the analyst about when the respon-
dent has opened the email. Some software now turns email data into data tables for use in spread-
sheet or statistical analysis software. One of the popular services for creating and administering
online surveys used by consultants can be found at SurveyMonkey.com, www.surveymonkey.com,
a Portland, Oregon, company started in 1999, which recently added email marketing services called
MailChimp to their product offerings.
Research shows that respondents are willing to answer questions about highly sensitive mat-
ters via the Internet. Thus, questions that may be difficult to pose in person regarding systems
problems may be acceptable to ask on a Web survey.
SUMMARY
This chapter covers three of the key interactive methods for information gathering that the systems analyst
can use, including interviewing, JAD, and construction of questionnaires. During the process of interview-
ing analysts, listen for HCI concerns relating to ergonomics, aesthetics, usability, and usefulness, as well as
goals, feelings, opinions, and informal procedures in interviews with organizational decision makers. Inter-
views are planned question-and-answer dialogues between two people. Analysts use the interview to de-
velop their relationship with a client, to observe the workplace, and to collect data. Interviews should
preferably be conducted in person.
The five steps to take in planning the interview are to read background material, establish interviewing
objectives, decide whom to interview, prepare the interviewee, and decide on question types and structure.
Questions are of two basic types: open-ended or closed. Open-ended questions leave open all response
options for the interviewee. Closed questions limit the possible options for response. Probes or follow-up
questions can be either open-ended or closed, but they ask the respondent for a more detailed reply.
Interviews can be structured in three basic ways: pyramid, funnel, or diamond. Pyramid structures be-
gin with detailed, closed questions and broaden to more generalized questions. Funnel structures begin with
www.surveymonkey.com
CHAPTER 4 • INFORMATION GATHERING: INTERACTIVE METHODS 123
open-ended, general questions and then funnel down to more specific, closed questions. Diamond-shaped
structures combine the strengths of the other two structures, but they take longer to conduct. Trade-offs are
involved when deciding how structured to make interview questions and question sequences.
To cut both the time and cost of personal interviews, analysts may want to consider joint application
design (JAD) instead. Using JAD, analysts can both analyze human information requirements and design a
user interface with users in a group setting. Careful assessment of the particular organizational culture will
help the analyst judge whether JAD is suitable.
By using questionnaires (surveys), systems analysts can gather data on HCI concerns, attitudes, be-
liefs, behavior, and characteristics from key people in the organization. Surveys are useful if people in the
organization are widely dispersed, many people are involved with the systems project, exploratory work
is necessary before recommending alternatives, or there is a need for problem sensing before interviews
are conducted.
Once objectives for the survey are set, the analyst can begin writing either open-ended or closed ques-
tions. Ideally, the questions should be simple, specific, short, free of bias, not patronizing, technically accu-
rate, addressed to those who are knowledgeable, and written at an appropriate reading level. The systems
analyst may want to use scales either to measure the attitudes or characteristics of respondents or to have re-
spondents act as judges for the subject of the questionnaire. Scaling is the process of assigning numbers or
other symbols to an attribute or characteristic.
Consistent control of the questionnaire format and style can result in a better response rate. Web sur-
veys can be designed to encourage consistent responses. In addition, the meaningful ordering and cluster-
ing of questions is important for helping respondents understand the questionnaire. Surveys can be
administered in a variety of ways, including electronically via email or the Web, or with the analyst pres-
ent in a group of users.
H Y P E R C A S E ® E X P E R I E N C E 4 . 2
“You’ve probably noticed by now that not everyone enjoys fill-
ing out questionnaires at MRE. We seem to get more questionnaires
than most organizations. I think it’s because many of the employ-
ees, especially those from the old Training Unit, value the contribu-
tions of questionnaire data in our work with clients. When you
examine the questionnaire that Snowden distributed, you’ll proba-
bly want not only to look at the results but also to critique it from a
methods standpoint. I always feel strongly that we can improve our
internal performance so that eventually we can better serve our
clients. The next time we construct a questionnaire, we want to be
able to improve three things: the reliability of the data, the validity
of the data, and the response rate we get.”
HYPERCASE Questions
1. What evidence of questionnaires have you found at MRE?
Be specific about what you have found and where.
2. Critique the questionnaire that Snowden circulated. What can
be done to improve its reliability, validity, and response rate?
Provide three practical suggestions.
3. Write a short questionnaire to follow up on some aspects of
the merger between Management Systems and the Training
Unit at MRE that are still puzzling you. Be sure to observe
all the guidelines for good questionnaire design.
4. Redesign the questionnaire you wrote in question 3 so that it
can be used as a Web survey.
KEYWORDS AND PHRASES
bipolar closed questions
central tendency
closed questions
diamond-shaped structure
funnel structure
halo effect
human–computer interaction (HCI)
informal procedures
interval scale
interviewee feelings
interviewee goals
interviewee opinions
joint application design (JAD)
leniency
nominal scale
open-ended questions
probes
pyramid structure
questionnaire
reliability
survey respondents
validity
124 PART II • INFORMATION REQUIREMENTS ANALYSIS
REVIEW QUESTIONS
1. What kinds of information should be sought in interviews?
2. List the five steps in interview preparation.
3. Define what is meant by open-ended interview questions. Give eight benefits and five drawbacks of
using them.
4. When are open-ended questions appropriate for use in interviewing?
5. Define what is meant by closed interview questions. Give six benefits and four drawbacks of using them.
6. When are closed questions appropriate for use in interviewing?
7. What is a probing question? What is the purpose of using a probing question in interviews?
8. Define what is meant by pyramid structure. When is it useful to employ it in interviews?
9. Define what is meant by funnel structure. When is it useful to employ it in interviews?
10. Define what is meant by diamond-shaped structure. When is it useful to employ it in interviews?
11. Define joint application design (JAD).
12. List the situations that warrant use of JAD in place of personal organizational interviews.
13. List the potential benefits of using joint application design.
14. List the three potential drawbacks of using JAD as an alternative to personal interviews.
15. What kinds of information is the systems analyst seeking through the use of questionnaires or surveys?
16. List four situations that make the use of questionnaires appropriate.
17. What are the two basic question types used on questionnaires?
18. List two reasons why a systems analyst would use a closed question on a questionnaire.
19. List two reasons why a systems analyst would use an open-ended question on a questionnaire.
20. What are the seven guidelines for choosing language for the questionnaire?
21. Define what is meant by scaling.
22. What are two kinds of information or scales that are most commonly used by systems analysts?
23. What are nominal scales used for?
24. Give an example of an interval scale.
25. When should the analyst use interval scales?
26. Define reliability as it refers to the construction of scales.
27. Define validity as it refers to the construction of scales.
28. List three problems that can occur because of careless construction of scales.
29. What are four actions that can be taken to ensure that the questionnaire format is conducive to a good
response rate?
30. Which questions should be placed first on the questionnaire?
31. Why should questions on similar topics be clustered together?
32. What is an appropriate placement of controversial questions?
33. List five methods for administering the questionnaire.
34. What considerations are necessary when questionnaires are Web-based?
PROBLEMS
1. As part of your systems analysis project to update the automated accounting functions for Xanadu
Corporation, a maker of digital cameras, you will interview Leo Blum, the chief accountant. Write
four to six interview objectives covering his use of information sources, information formats,
decision-making frequency, desired qualities of information, and decision-making style.
a. In a paragraph, write down how you will approach Leo to set up an interview.
b. State which structure you will choose for this interview. Why?
c. Leo has four subordinates who also use the system. Would you interview them also? Why or why
not?
d. Would you also try to interview customers (visitors to the Web site)? Are there better ways to get
the opinions of customers? Why or why not?
e. Write three open-ended questions that you will email to Leo prior to your interview. Write a
sentence explaining why it is preferable to conduct an interview in person rather than via email.
2. Here are five questions written by one of your systems analysis team members. Her interviewee is
the local manager of LOWCO, an outlet of a national discount chain, who has asked you to work on
a management information system to provide inventory information. Review these questions for your
team member.
1. When was the last time you thought seriously about your decision-making process?
2. Who are the trouble makers in your store, I mean the ones who will show the most resistance to
changes in the system that I have proposed?
3. Are there any decisions you need more information about to make them?
4. You don’t have any major problems with the current inventory control system, do you?
CHAPTER 4 • INFORMATION GATHERING: INTERACTIVE METHODS 125
5. Tell me a little about the output you’d like to see.
a. Rewrite each question to be more effective in eliciting information.
b. Order your questions in either a pyramid, funnel, or diamond-shaped structure, and label the
questions with the name of the structure you used.
c. What guidelines can you give your team member for improving her interviewing questions
for the future? Make a list of them.
3. Ever since you walked through the door, your interviewee, Max Hugo, has been shuffling papers,
looking at his watch, and drumming on his desk with his fingers. Based on what you know about
interviews, you guess that Max is nervous because of the other work he needs to do. In a paragraph,
describe how you would deal with this situation so that the interview can be accomplished with
Max’s full attention. (Max cannot reschedule the interview for a different day.)
4. Write a series of six closed questions that cover the subject of decision-making style for the manager
described in Problem 2.
5. Write a series of six open-ended questions that cover the subject of decision-making style for the
manager described in Problem 2.
6. Examine the interview structure presented in the sequencing of the following questions:
1. How long have you been in this position?
2. What are your key responsibilities?
3. What reports do you receive?
4. How do you view the goals of your department?
5. How would you describe your decision-making process?
6. How can that process best be supported?
7. How frequently do you make those decisions?
8. Who is consulted when you make a decision?
9. What is the one decision you make that is essential to departmental functioning?
a. What structure is being used? How can you tell?
b. Restructure the interview by changing the sequence of the questions (you may omit some if
necessary). Label the reordered questions with the name of the structure you have used.
7. The following is the first interview report filed by one of your systems analysis team members: “In
my opinion, the interview went very well. The subject allowed me to talk with him for an hour and a
half. He told me the whole history of the business, which was very interesting. The subject also
mentioned that things have not changed all that much since he has been with the firm, which is about
16 years. We are meeting again soon to finish the interview, because we did not have time to go into
the questions I prepared.”
a. In two paragraphs, critique the interview report. What critical information is missing?
b. What information is extraneous to the interview report?
c. If what is reported actually occurred, what three suggestions do you have to help your teammate
conduct a better interview next time?
8. Cab Wheeler is a newly hired systems analyst with your group. Cab has always felt that
questionnaires are a waste. Now that you will be doing a systems project for MegaTrucks, Inc., a
national trucking firm with branches and employees in 130 cities, you want to use a questionnaire to
elicit some opinions about the current and proposed systems.
a. Based on what you know about Cab and MegaTrucks, give three persuasive reasons why he
should use a survey for this study.
b. Given your careful arguments, Cab has agreed to use a questionnaire but strongly urges that all
questions be open-ended so as not to constrain the respondents. In a paragraph, persuade Cab
that closed questions are useful as well. Be sure to point out trade-offs involved with each
question type.
9. “Every time we get consultants in here, they pass out some goofy questionnaire that has no meaning
to us at all. Why don’t they bother to personalize it, at least a little?” asks Ray Dient, head of
emergency systems. You are discussing the possibility of beginning a systems project with Pohattan
Power Company (PPC) of Far Meltway, New Jersey.
a. What steps will you follow to customize a standardized questionnaire?
b. What are the advantages of adapting a questionnaire to a particular organization? What are the
disadvantages?
10. A sample question from the draft of the Pohattan Power Company questionnaire reads:
I have been with the company:
20–upwards years
10–15 years upwards
5–10 years upwards
less than a year
Check one that most applies.
126 PART II • INFORMATION REQUIREMENTS ANALYSIS
a. What kind of a scale is the question’s author using?
b. What errors have been made in the construction of the question, and what might be the possible
responses?
c. Rewrite the question to achieve clearer results.
d. Where should the question you’ve written appear on the questionnaire?
11. Also included on the PPC questionnaire is this question:
When residential customers call, I always direct them to our Web site to get an answer.
Sometimes Never Always Usually
1 2 3 4
a. What type of scale is this one intended to be?
b. Rewrite the question and possible responses to achieve better results.
12. Figure 4.EX1 is a questionnaire designed by an employee of Green Toe Textiles, which specializes in
manufacturing men’s socks. Di Wooly wrote the questionnaire because, as the office manager at
headquarters in Juniper, Tennessee, she is concerned with the proposed purchase and implementation
of a new computer system.
Hi! All EmployeesWhat’s new? According to the grapevine, I hear we’re in for a new computer. Here
are some questions for you to think about.a. How long have you used the old computer?
b. How often does it go down?c. Who repairs it for you?d. When was the last time you suggested a new improvement to the computer
system and it was put into use? What was it?
e. When was the last time you suggested a new improvement to the computer
system and nobody used it? What was it?
f. Do you use a VDT or printer or both?g. How fast do you type?h. How many people need to access the database regularly at your branch? Is there
anyone not using the computer now who would like to?
FIGURE 4.EX1
Questionnaire developed
by Di Wooly.
a. Provide a one-sentence critique for each question given.
b. In a paragraph, critique the layout and style in terms of white space used, room for responses, ease
of responding, and so on.
13. Based on what you surmise Ms. Wooly is trying to get through the questionnaire, rewrite and reorder
the questions (use both open-ended and closed questions) so that they follow good practice and result in
useful information for the systems analysts. Indicate next to each question that you write whether it is
open-ended or closed, and write a sentence indicating why you have written the question this way.
14. Redesign the questionnaire you created for Ms. Wooly in Problem 13 for use on email. Write a
paragraph saying what changes were necessary to accommodate email users.
15. Redesign the questionnaire you created for Ms. Wooly in Problem 13 as a Web survey. Write a
paragraph saying what changes were necessary to accommodate Web users.
CHAPTER 4 • INFORMATION GATHERING: INTERACTIVE METHODS 127
GROUP PROJECTS
1. With your group members, role-play a series of interviews with various system users at Maverick
Transport. Each member of your group should choose one of the following roles: company president,
information technology director, dispatcher, customer service agent, or truck driver. Those group
members playing roles of Maverick Transport employees should attempt to briefly describe their job
responsibilities, goals, and informational needs.
Remaining group members should play the roles of systems analysts and devise interview
questions for each employee. If there are enough people in your group, each analyst may be assigned
to interview a different employee. Those playing the roles of systems analysts should work together
to develop common questions that they will ask, as well as questions tailored to each individual
employee. Be sure to include open-ended, closed, and probing questions in your interviews.
Maverick Transport is attempting to change from outdated and unreliable technology to more
state-of-the-art, dependable technology. The company is seeking to move from dumb terminals
attached to a mainframe because it wants to use PCs in some way, and is also interested in
investigating a satellite system for tracking freight and drivers. In addition, the company is interested
in pursuing ways to cut down on the immense storage requirements and difficult access of the
troublesome handwritten, multipart forms that accompany each shipment.
2. Conduct all five interviews in a role-playing exercise. If there are more than 10 people in your group,
permit two or more analysts to ask questions.
3. With your group, write a plan for a JAD session that takes the place of personal interviews. Include
relevant participants, suggested setting, and so on.
4. Using the interview data you gained from the group exercise on Maverick Transport in Project 1,
meet with your group to brainstorm the design of a questionnaire for the hundreds of truck drivers
that Maverick Transport employs. Recall that Maverick is interested in implementing a satellite
system for tracking freight and drivers. There are other systems that may affect the drivers as well.
As your group constructs the questionnaire, consider the drivers’ likely level of education and any
time constraints the drivers are under for completing such a form.
5. Using the interview data you gained from the group exercise on Maverick Transport in Project 1,
your group should meet to design an email or Web questionnaire for surveying the company’s 20
programmers (15 of whom have been hired in the past year) about their skills, ideas for new or
enhanced systems, and so on. Investigate the Web survey options available at SurveyMonkey.com.
As your group constructs the programmer survey, consider what you have learned about users in the
other interviews as well as what vision the director of information technology holds for the company.
SELECTED BIBLIOGRAPHY
Ackroyd, S., and J. A. Hughes. Data Collection Context, 2d ed. New York: Addison-Wesley, 1992.
Cash, C. J., and W. B. Stewart, Jr. Interviewing Principles and Practices, 12th ed. New York: McGraw-
Hill/Irwin, 2007.
Cooper, D. R., and P. S. Schindler. Business Research Methods, 10th ed. New York: McGraw-Hill/Irwin,
2007.
Deetz, S. Transforming Communication, Transforming Business: Building Responsive and Responsible
Workplaces. Cresskill, NJ: Hampton Press, 1995.
Emerick, D., K. Round, and S. Joyce. Exploring Web Marketing and Project Management. Upper Saddle
River, NJ: Prentice Hall PTR, 2000.
Gane, C. Rapid System Development. New York: Rapid System Development, 1987.
Georgia Tech’s Graphic, Visualization, and Usability Center. “GVU WWW Survey through 1998.” Avail-
able at: http://www.cc.gatech.edu/gvu/user_surveys/survey-1998-10/. Last accessed July 15, 2009.
Hessler, R. M. Social Research Methods. New York: West, 1992.
Joint Application Design. GUIDE Publication GPP-147. Chicago: GUIDE International, 1986.
Peterson, R. A. Constructing Effective Questionnaires. Thousand Oaks, CA: Sage Publications, 1999.
Strauss, J., and R. Frost. E-Marketing, 5th ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2008.
Wansink, B., S. Sudman, and N. M. Bradburn. Asking Questions: The Definitive Guide to Questionnaire
Design—For Market Research, Political Polls, and Social and Health Questionnaires. New York:
Wiley, 2004.
http://www.cc.gatech.edu/gvu/user_surveys/survey-1998-10/
128 PART II • INFORMATION REQUIREMENTS ANALYSIS
E P I S O D E 4
CPU CASE
ALLEN SCHMIDT, JULIE E. KENDALL, AND KENNETH E. KENDALL
I’ll Listen Now, Ask Questions Later
“I’ve scheduled preliminary interviews with five key people. Because you’ve been so busy with Visible Ana-
lyst, I decided to do the first round of interviews myself,” Anna tells Chip as they begin their morning meeting.
“That’s fine with me,” Chip says. “Just let me know when I can fill in. Who will you be talking to
first? Dot?”
“No secret there, I guess,” replies Anna. “She’s critical to the success of the system. Her word is it when
it comes to whether a project will fly or not.”
“Who else?” asks Chip.
“I’ll see who Dot refers me to, but I set up appointments with Mike Crowe, the hardware and mainte-
nance expert; Cher Ware, the software specialist; and Paige Prynter, CPU’s financial analyst.”
“Don’t forget Hy Perteks,” says Chip.
“Right. The Computing Support Center will be important to our project,” says Anna. “Let me call and
see when he’s available.”
After a brief phone conversation with Hy, Anna turns once again to Chip.
“He’ll meet with me later today,” Anna confirms.
After completing her interviews, Anna sits at her desk, reviewing the interview summaries and the
memos that were gathered during the summer. Several stacks of papers are neatly filed in expansion folders.
“We have so much information,” she remarks to Chip, “yet I sense that we are only working with the tip
of the iceberg. I don’t have a solid feeling for the difficulties of faculty members and research staff. Are there
additional problems we haven’t heard about?”
Chip looks up from his work of trying to extract key points for defining the problems. “I wonder if we
should do more interviews, or perhaps gather more documents,” he says.
“But how many interviews should we conduct and who should we interview?” Anna replies. “Suppose
we interview several staff members and base the new system on the results. We could interview the wrong
people and design a system to satisfy only their needs, missing key problems that the majority of faculty and
staff need to have solved.”
“I see what you mean,” Chip answers. “Perhaps we should design a questionnaire and survey the fac-
ulty and research staff.”
“Great idea!” Anna says. “How should we decide which questions to include on the survey?”
“Let’s speak with some key people and base the survey on the results. A good starting point would be
Hy Perteks, because he is always talking with the faculty and staff. I’ll give him a call and arrange a meet-
ing,” Chip says.
Chip arranged the meeting for the following morning. It would be held in a conference room adjacent
to the Computing Support Center.
“Thanks for meeting with us on such short notice,” Chip opens. “We’re thinking about surveying
the faculty and research staff to obtain additional information that will help us define the system
concerns.”
“I think it’s a tremendous idea,” Hy replies. “I would also like to find out what type of software
should be available in the Computing Support Center and the type of training we should provide. Infor-
mation about the major package types used should be obtained,” Hy continues. “Web creation and video
software is essential. We should find out which package each user likes and, equally important, which ver-
sion of the package. I know that many are using Dreamweaver and others are using Freeway Pro. Data-
base software also varies although many are using Access. Same for video creation, with Camtasia being
the most popular.
“Another consideration would be what type of specialized software is used by groups of faculty mem-
bers,” muses Hy. “Many of the people in the math department are using Mathcad. Others are using various
software packages for a number of courses. For instance, the information science people are using Visio, but
a few are using Visible Analyst. I’ve also heard that we’re getting some biology and astronomy software.
And the art department uses Macs almost exclusively. Many of the faculty are getting heavily into software
for image construction, such as Photoshop and Flash.”
“Other than software packages and versions, what types of information should we capture?”
asks Chip.
CHAPTER 4 • INFORMATION GATHERING: INTERACTIVE METHODS 129
“I would like to know what level of expertise each person has,” responds Hy. “No doubt, some are be-
ginners, whereas others have a good knowledge but have not mastered all the features of a particular pack-
age. Some are experts. They know the software inside and out. I’m interested in the beginners and
intermediate users, because we should be providing different training for them. Knowing who’s an expert
helps, too.”
“Is there anything else you feel we should find out about in the survey?” asks Chip.
“The only other thing that I worry about are problems that result in a faculty or staff member not using
the software,” Hy replies.
“What do you mean?” asks Chip.
“Well, suppose a person has the software but it is installed incorrectly or displays some sort of security
or access rights message,” replies Hy. “I’ve had some inquiries about this matter recently. One person said
that they were working with Windows Vista with their data on a USB hard drive, and it would not grant them
access rights. There’s a faculty member in math, Rhoda Booke, who has consistently shown interest in hard-
ware and software issues. I’ve helped her a number of times, and she’s always friendly and grateful. You
should interview her for sure.”
“Thanks once again for all your help,” says Chip. “We’ll get back to you later with the results of the
survey.”
Anna arranges a meeting with Rhoda and explains the nature of the project and why she was selected
as a faculty representative. The meeting was held in a small conference room in the math department.
“We’d like to have the faculty perspective on problems encountered with computers and the associated
software,” says Anna. “Our goal is to provide the faculty with the best possible resources with the least num-
ber of problems.”
“I’m really glad to be a part of the project,” exclaims Rhoda. “I’ve been using classroom software for
about 10 years or so, and what a learning experience it has been! Thank goodness that Hy is available as a
resource. I’ve taken hours of his time, and it’s been well worth the effort. I feel much more productive, and
the students are using software that helps them grasp the material more thoroughly.”
“That’s good, but are there some difficulties that you’ve been experiencing?” asks Chip.
“Well, becoming familiar with the software is a major hurdle. I spent a good portion of last summer,
when I wasn’t working on my book, learning how to use some of the classroom software for both algebra
and calculus. The stuff’s great, but I got stuck several times and had to call for help. It’s necessary to under-
stand the software to prepare lesson plans and explain to the students how to use it.”
“How about problems with installing the software or hardware?” Anna asks.
“Oh, yes!” exclaims Rhoda. “I tried to install the software, and it went smoothly until the part where I
went to receive updates from their Web site, and there were some problems with registration,” laughs Rhoda.
“Then there were setup problems,” Rhoda continues. “I needed to figure out what to install on the net-
work and what to include on the local hard drive. Some of the laptops gave us ‘Not enough memory’error mes-
sages, and we learned that they had never been updated. The physics faculty had the same problem.”
“Are there any other concerns you feel that we should include on our survey to the faculty and research
staff?” Chip asks.
“It would be useful to know who is using the same software in different departments and what soft-
ware is supplied by which vendor. Perhaps if we purchase many packages from one vendor, we could get
a larger discount for software. The department software budget is already overwhelmed,” Rhoda says.
“Thanks for all your help,” Anna says. “If you think of any additional questions we should include on
the survey, please do not hesitate to call us.”
Back in their office, the analysts start compiling a list of the issues to be contained on the survey.
“We certainly need to ask about the software in use and about training needs,” remarks Anna. “We
should also address the problems that are occurring.”
“Agreed,” replies Chip. “I feel that we should include questions on software packages, vendors, ver-
sions, level of expertise, and training concerns. What I’m not so sure about is how to obtain information on
problems the faculty and staff are encountering. How should we approach these issues?”
“Well,” replies Anna, “we should focus on matters with which they are familiar. We might ask ques-
tions about the type of problems that are occurring, but certainly not technical ones. And the survey should
not ask any questions that we could easily look up answers to, such as ‘Who is the vendor for the software?’”
“I see,” replies Chip. “Let’s divide the questions into categories. Some would be closed questions and
some would be open-ended. Then there’s the matter of which structure to use.”
“We’ll use Zoomerang to administer the survey on the Web,” continues Anna. “Along with email re-
minders about the cutoff date for the survey.”
130 PART II • INFORMATION REQUIREMENTS ANALYSIS
EXERCISES
The first three exercises require that you visit the Web site to obtain the text of the interviews with CPU staff
members. Please visit the Web site at www.pearsonhighered.com/kendall and look for the “CPU Interviews.”
E-1. Analyze the five interviews. In a paragraph, discuss what type of structure each interview had.
E-2. List each interview, 1 through 5, and then write a paragraph for each, discussing ways that Anna might
improve on her interviews for next time.
E-3. Analyze the questions used in the five interviews. In a paragraph, discuss the question types used and
whether they were appropriate for getting needed information.
E-4. From the list of concerns presented earlier in this chapter, select the issues that would best be phrased
as closed questions.
E-5. From the list of concerns, select the issues that would best be phrased as open-ended questions.
E-6. On the basis of Exercises E-4 and E-5, design a questionnaire to be sent to the faculty and research
staff.
E-7. Pilot your questionnaire by having other students in class fill it out. On the basis of their feedback and
your capability to analyze the data you receive, revise your questionnaire.
www.pearsonhighered.com/kendall
131
C H A P T E R 5
Information Gathering:
Unobtrusive Methods
LEARNING OBJECTIVES
Once you have mastered the material in this chapter you will be able to:
1. Recognize the value of unobtrusive methods for information gathering.
2. Understand the concept of sampling for human information requirements analysis.
3. Construct useful samples of people, documents, and events for determining human
information requirements.
4. Create an analyst’s playscript to observe decision-maker activities.
5. Apply the STROBE technique to observe and interpret the decision maker’s environment
and interaction with technologies.
Just by being present in an organization, the systems analyst changes it.
However, unobtrusive methods such as sampling, investigation, and ob-
serving a decision maker’s behavior and interaction with his or her physi-
cal environment are less disruptive than other ways of eliciting human
information requirements. Unobtrusive methods are considered to be in-
sufficient information-gathering methods when used alone. Rather, they should be used in con-
junction with one or many of the interactive methods studied in the previous chapter. This is
called a multiple methods approach. Using both interactive and unobtrusive methods in ap-
proaching the organization is a wise practice that will result in a more complete picture of hu-
man information requirements.
SAMPLING
Sampling is the process of systematically selecting representative elements of a population.
When these selected elements are examined closely, it is assumed that the analysis will reveal
useful information about the population as a whole.
The systems analyst has to make a decision on two key issues. First, there are many reports,
forms, output documents, memos, and Web sites that have been generated by people in the orga-
nization. Which of these should the systems analyst pay attention to, and which should the sys-
tems analyst ignore?
Second, a great many employees can be affected by the proposed information system. Which
people should the systems analyst interview, seek information from via questionnaires, or ob-
serve in the process of carrying out their decision-making roles?
132 PART II • INFORMATION REQUIREMENTS ANALYSIS
The Need for Sampling
There are many reasons a systems analyst would want to select either a representative sample of
data to examine or representative people to interview, question, or observe. They include:
1. Containing costs.
2. Speeding up the data gathering.
3. Improving effectiveness.
4. Reducing bias.
Examining every scrap of paper, talking with everyone, and reading every Web page from the
organization would be far too costly for the systems analyst. Copying reports, asking employees for
valuable time, and duplicating unnecessary surveys would result in much needless expense.
Sampling helps accelerate the process by gathering selected data rather than all data for the
entire population. In addition, the systems analyst is spared the burden of analyzing data from the
entire population.
Effectiveness in data gathering is an important consideration as well. Sampling can help im-
prove effectiveness if information that is more accurate can be obtained. Such sampling is accom-
plished, for example, by talking to fewer employees but asking them questions that are more
detailed. In addition, if fewer people are interviewed, the systems analyst can afford the time to
follow up on missing or incomplete data, thus improving the effectiveness of data gathering.
Finally, data gathering bias can be reduced by sampling. When the systems analyst interviews
an executive of the corporation, for example, the executive is involved with the project, be-
cause this person has already given a certain amount of time to the project and would like it to
succeed. When the systems analyst asks for an opinion about a permanent feature of the installed
information system, the executive interviewed may provide a biased evaluation, because there is
little possibility of changing it.
Sampling Design
A systems analyst must follow four steps to design a good sample:
1. Determine the data to be collected or described.
2. Determine the population to be sampled.
3. Choose the type of sample.
4. Decide on the sample size.
These steps are described in detail in the following subsections.
DETERMINING THE DATA TO BE COLLECTED OR DESCRIBED. The systems analyst needs a realistic
plan about what will be done with the data once they are collected. If irrelevant data are gathered,
then time and money are wasted in the collection, storage, and analysis of useless data.
The duties and responsibilities of the systems analyst at this point are to identify the vari-
ables, attributes, and associated data items that need to be gathered in the sample. The objectives
of the study must be considered as well as the type of data-gathering method (investigation, in-
terviews, questionnaires, observation) to be used. The kinds of information sought when using
each of these methods are discussed in more detail in this and subsequent chapters.
DETERMINING THE POPULATION TO BE SAMPLED. Next, the systems analyst must determine what
the population is. In the case of hard data, the systems analyst needs to decide, for example, if the
last two months are sufficient, or if an entire year’s worth of reports are needed for analysis.
Similarly, when deciding whom to interview, the systems analyst has to determine whether
the population should include only one level in the organization or all the levels, or maybe the an-
alyst should even go outside of the system to include the reactions of customers, vendors, suppli-
ers, or competitors. These decisions are explored further in the chapters on interviewing,
questionnaires, and observation.
CHOOSING THE TYPE OF SAMPLE. The systems analyst can use one of four main types of samples,
as pictured in Figure 5.1. They are convenience, purposive, simple, and complex. Convenience
samples are unrestricted, nonprobability samples. A sample could be called a convenience sample
if, for example, the systems analyst posts a notice on the company’s intranet asking for everyone
CHAPTER 5 • INFORMATION GATHERING: UNOBTRUSIVE METHODS 133
Sample elements are
selected directly
without restrictions
Convenience Simple random
Sample elements are
selected according
to specific criteria
Complex random
(systematic, stratified,
and cluster)
Purposive
Not Based on Probability Based on Probability
The systems
analyst should
use a complex
random sample
if possible.
FIGURE 5.1
Four main types of samples the
analyst has available.
interested in working with the new sales performance reports to come to a meeting at 1 P.M. on
Tuesday the 12th. Obviously, this sample is the easiest to arrange, but it is also the most unreliable.
A purposive sample is based on judgment.
A systems analyst can choose a group of individuals who appear knowledgeable and who are
interested in the new information system. Here the systems analyst bases the sample on criteria
(knowledge about and interest in the new system), but it is still a nonprobability sample. Thus,
purposive sampling is only moderately reliable. If you choose to perform a simple random sam-
ple, you need to obtain a numbered list of the population to ensure that each document or person
in the population has an equal chance of being selected. This step often is not practical, especially
when sampling involves documents and reports. The complex random samples that are most ap-
propriate for the systems analyst are (1) systematic sampling, (2) stratified sampling, and (3) clus-
ter sampling.
In the simplest method of probability sampling, systematic sampling, the systems analyst
would, for example, choose to interview every kth person on a list of company employees. This
method has certain disadvantages, however. You would not want to use it to select every kth day
for a sample because of the potential periodicity problem. Furthermore, a systems analyst would
not use this approach if the list were ordered (for example, a list of banks from the smallest to the
largest), because bias would be introduced.
Stratified samples are perhaps the most important to the systems analyst. Stratification is the
process of identifying subpopulations, or strata, and then selecting objects or people for sampling
in these subpopulations. Stratification is often essential if the systems analyst is to gather data ef-
ficiently. For example, if you want to seek opinions from a wide range of employees on different
levels of the organization, systematic sampling would select a disproportionate number of em-
ployees from the operational control level. A stratified sample would compensate for this. Strat-
ification is also called for when the systems analyst wants to use different methods to collect data
from different subgroups. For example, you may want to use a survey to gather data from middle
managers, but you might prefer to use personal interviews to gather similar data from executives.
Sometimes the systems analyst must select a group of people or documents to study. This
process is referred to as cluster sampling. Suppose an organization had 20 help desks scattered
across the country. You may want to select one or two of these help desks under the assumption
that they are typical of the remaining ones.
DECIDING ON THE SAMPLE SIZE. Obviously, if everyone in the population viewed the world the
same way or if each of the documents in a population contained exactly the same information as
every other document, a sample size of one would be sufficient. Because that is not the case, it is
necessary to set a sample size greater than one but less than the size of the population itself.
It is important to remember that the absolute number is more important in sampling than the
percentage of the population. We can obtain satisfactory results sampling 20 people in 200 or
20 people in 2,000,000.
134 PART II • INFORMATION REQUIREMENTS ANALYSIS
The Sample Size Decision
The sample size often depends on the cost involved or the time required by the systems analyst, or
even the time available by people in the organization. This subsection gives the systems analyst some
guidelines for determining the required sample size under ideal conditions, for example, to determine
what percentage of input forms contain errors, or alternatively what proportion of people to interview.
The systems analyst needs to follow seven steps, some of which involve subjective judg-
ments, to determine the required sample size:
1. Determine the attribute (in this case, the type of errors to look for).
2. Locate the database or reports in which the attribute can be found.
3. Examine the attribute. Estimate p, the proportion of the population having the attribute.
4. Make the subjective decision regarding the acceptable interval estimate, i.
5. Choose the confidence level and look up the confidence coefficient (z value) in a table.
6. Calculate �p, the standard error of the proportion, as follows:
7. Determine the necessary sample size, n, using the following formula:
The first step, of course, is to determine which attribute you will be sampling. Once this is done,
you can find out where this data is stored, perhaps in a database, on a form, or in a report.
It is important to estimate p, the proportion of the population having the attribute, so that you
set the appropriate sample size. Many textbooks on systems analysis suggest using a heuristic of
0.25 for p(1 – p). This value almost always results in a sample size larger than necessary because
0.25 is the maximum value of p(1 – p), which occurs only when p = 0.50. When p = 0.10, as is
more often the case, p(1 – p) becomes 0.09, resulting in a much smaller sample size.
Steps 4 and 5 are subjective decisions. The acceptable interval estimate of ±0.10 means that
you are willing to accept an error of no more than 0.10 in either direction from the actual propor-
tion, p. The confidence level is the desired degree of certainty, say, for example, 95 percent. Once
the confidence level is chosen, the confidence coefficient (also called a z value) can be looked up
in a table like the one found in this chapter.
Steps 6 and 7 complete the process by taking the parameters found or set in steps 3 through
5 and entering them into two equations to eventually solve for the required sample size.
Example
The foregoing steps can best be illustrated by an example. Suppose the A. Sembly Company,
a large manufacturer of shelving products, asks you to determine what percentage of orders
contain errors. You agree to do this job and perform the following steps. You:
1. Determine that you will be looking for orders that contain mistakes in names,
addresses, quantities, or model numbers.
2. Locate copies of order forms from the past six months.
3. Examine some of the order forms and conclude that only about 5 percent (0.05)
contain errors.
4. Make a subjective decision that the acceptable interval estimate will be ±0.02.
5. Choose a confidence level of 95 percent. Look up the confidence coefficient (z
value) in Figure 5.2. The z value equals 1.96.
6. Calculate �p as follows:
7. Determine the necessary sample size, n, as follows:
n =
p11 – p 2
�2
p
+ 1 =
0.0510.95 2
10.0102 2 10.0102 2
+ 1 = 458
�p =
i
z
=
0.02
1.96
= 0.0102
n =
p11 – p 2
�2
p
+ 1
�p =
i
z
CHAPTER 5 • INFORMATION GATHERING: UNOBTRUSIVE METHODS 135
99% 2.58
98 2.33
97 2.17
96 2.05
95 1.96
90 1.65
80 1.28
50 0.67
Confidence
Level
Confidence
Coefficient
(z value)
First decide on
the confidence
level …
… then look up
the z value.
FIGURE 5.2
A table of area under a normal
curve can be used to look up a
value once the systems analyst
decides on the confidence level.
The conclusion, then, is to set the sample size at 458. Obviously, a greater confidence level or a
smaller acceptable interval estimate would require a larger sample size. If we keep the acceptable
interval estimate the same but increase the confidence level to 99 percent (with a z value of 2.58),
the necessary sample size becomes 1,827, a figure much larger than the 458 we originally decided
to sample.
C O N S U L T I N G O P P O R T U N I T Y 5 . 1
Trapping a Sample
“Real or fake? Fake or real? Who would have thought it, even
five years ago?” howls Sam Pelt, a furrier who owns stores in New
York; Washington, D.C.; Beverly Hills; and Copenhagen. Sylva
Foxx, a systems analyst with her own consulting firm, is talking
with Sam for the first time. Currently, P & P, Ltd. (which stands for
Pelt and Pelt’s son) is using a PC that supports package software for
a select customer mailing list, accounts payable and accounts re-
ceivable, and payroll.
Sam is interested in making some strategic decisions that will
ultimately affect the purchasing of goods for his four fur stores. He
feels that although the computer might help, other approaches
should also be considered.
Sam continues, “I think we should talk to all the customers when
they come in the door. Get their opinions. You know, some of them are
getting very upset about wearing fur from endangered species.
They’re very environmentally minded. They prefer fake to real, if they
can save a baby animal. Some even like fakes better, calling them ‘fun
furs.’And I can charge almost the same for a good look-alike.
“It’s a very fuzzy proposition, though. If I get too far away from
my suppliers of pelts, I may not get what I want when I need it. They
see the fake fur people as worms, worse than moths! If I deal with
them, the real fur men might not talk to me. They can be animals. On
the other hand, I feel strange showing fakes in my stores. All these
years, we’ve prided ourselves on having only the genuine article.”
Sam continues, in a nearly seamless monologue, “I want to
talk to each and every employee, too.”
Sylva glances at him furtively and begins to interrupt. “But
that will take months, and purchasing may come apart at the seams
unless they know soon what—.”
Pelt interrupts, “I don’t care how long it takes, if we get the
right answers. But they have to be right. Not knowing how to solve
this dilemma about fake furs is making me feel like a leopard with-
out its spots.”
Sylva talks to Sam Pelt a bit longer and then ends the interview
by saying, “I’ll talk it all over with the other analysts at the office
and let you know what we come up with. I think we can outfox the
other furriers if we use software to help us sample opinions, rather
than trapping unsuspecting customers into giving an opinion. But
I’ll let you know what they say. This much is for sure: If we can
sample and not talk to everybody before making a decision, every
coat you sell will have a silver lining.”
As one of the systems analysts who is part of Sylva Foxx’s
firm, suggest some ways that Sam Pelt can use software on the PC
he has to adequately sample the opinions of his customers, store
managers, buyers, and any others you feel will be instrumental in
making the strategic decision regarding the stocking of fake furs in
what has always been a real fur store. Suggest a type of sample for
each group and justify it. The constraints you are subject to include
the need to act quickly so as to remain competitive, the need to re-
tain a low profile so that competing furriers are unaware of your
fact gathering, and the need to keep costs of data gathering to a rea-
sonable level.
136 PART II • INFORMATION REQUIREMENTS ANALYSIS
DETERMINING SAMPLE SIZE WHEN INTERVIEWING. There are no magic formulas to help the
systems analyst set the sample size for interviewing. The overriding variable that determines how
many people the systems analyst should interview in depth is the time an interview takes. A true
in-depth interview and follow-up interview is very time consuming for both the interviewer and
the participant.
A good rule of thumb is to interview at least three people on every level of the organization
and at least one from each of the organization’s functional areas (as described in Chapter 2) who
will work directly with a new or updated system. Remember also that one does not have to inter-
view more people just because it is a larger organization. If the stratified sample is done properly,
a small number of people will adequately represent the entire organization.
INVESTIGATION
Investigation is the act of discovery and analysis of data. While investigating evidence in an or-
ganization, the analyst acts like Sherlock Holmes, the fabled detective from 221B Baker Street.
As the systems analyst works to understand users, their organization, and its information re-
quirements, it will become important to examine different types of hard data that offer informa-
tion unavailable through any other method of data gathering. Hard data reveal where the
organization has been and where its members believe it is going. To piece together an accurate
picture, the analyst needs to examine both quantitative and qualitative hard data.
Analyzing Quantitative Documents
Many quantitative documents are available for interpretation in any business, and they include re-
ports used for decision making, performance reports, records, and a variety of forms. All these
documents have a specific purpose and audience for which they are targeted.
REPORTS USED FOR DECISION MAKING. A systems analyst needs to obtain some of the
documents that are used in running the business. These documents are often paper reports
regarding the status of inventory, sales, or production. Many of these reports are not complex, but
they serve mainly as feedback for quick action. For example, a sales report may summarize the
amount sold and the type of sales. In addition, sales reports might include graphical output
comparing revenue and income over a set number of periods. Such reports enable the decision
maker to spot trends easily.
Production reports include recent costs, current inventory, recent labor, and plant informa-
tion. Beyond these key reports, many summary reports are used by decision makers to provide
background information, spot exceptions to normal occurrences, and afford strategic overviews
of organizational plans.
PERFORMANCE REPORTS. Most performance reports take on the general form of actual versus
intended performance. One important function of performance reports is to assess the size of the
gap between actual and intended performance. It is also important to be able to determine if that
gap is widening or narrowing as an overall trend in whatever performance is being measured.
Figure 5.3 shows a clear improvement in sales performance over two to three months. The analyst
will want to note if performance measurement is available and adequate for key organizational
areas.
RECORDS. Records provide periodic updates of what is occurring in the business. If the record is
updated in a timely fashion by a careful recorder, it can provide much useful information to the
analyst. Figure 5.4 is a manually completed payment record for an apartment rental. There are
several ways that the analyst can inspect a record, many of which are indicative of their usability:
1. Checking for errors in amounts and totals.
2. Looking for opportunities for improving the recording form design.
3. Observing the number and type of transactions.
4. Watching for instances in which the computer can simplify the work (i.e., calculations and
other data manipulation).
DATA CAPTURE FORMS. Before you set out to change the information flows in the organization,
you need to be able to understand the system that is currently in place. You or one of your team
CHAPTER 5 • INFORMATION GATHERING: UNOBTRUSIVE METHODS 137
Number of
Batches
Produced
Number of
Batches
Rejected
Percentage Amount
Away from
5% Goal
Week
Rejected
2/2 245 19 7.8 2.8
2/9 229 19 8.3 3.3
2/16 219 14 6.3 1.3
2/23 252 13 5.2 0.2
3/2 245 13 5.3 0.3
3/9 260 13 5.0 * * *
3/16 275 14 5.1 0.1
3/23 260 13 5.0 * * *
3/30 260 13 5.0 * * *
4/6 244 12 4.9 * * *
4/13 242 11 4.5 * * *
4/20 249 11 4.4 * * *
4/27 249 11 4.4 * * *
* * * indicates met or exceeded the < 5% goal
… and trends.
Performance
reports
show goals …
FIGURE 5.3
A performance report showing
improvement.
C O N S U L T I N G O P P O R T U N I T Y 5 . 2
A Rose by Any Other Name...Or Quality, Not Quantities
“I think we have everything we need. I’ve sampled financial state-
ments, sales figures for each branch, wastage for each shop—we have
it all. With all these numbers, we should be able to figure out how to
keep Fields in the green, or at least at the forefront of the flower busi-
ness. We can even show Seymour Fields himself how his new com-
puter system can make it all happen,” says Rod Golden, a junior
systems analyst working for a medium-sized consulting group.
The firm, under the supervision of its head systems analyst,
Clay Potts, has been working on a systems project for the entire
chain of 15 successful florist shops and indoor floral markets called
Fields. Each of three Midwestern cities has five Fields outlets.
“Although it’s just a budding enterprise now, eventually we
want to grow with offshoots to half a dozen states,” says Seymour
Fields, the owner. “I want to reap the benefits of all the happiness
we’ve sown so far. I think we can do it by playing my hunches about
what is the best time to purchase flowers at each European market
we buy from, and then we should prune back our purchases.
“Over the past three years, I’ve written lots of memos to our
managers about this plan. They’ve written some good ones back,
too. I think we’re ready to stake out some territory on this soon,”
continues Seymour, painting a rosy picture of Fields’s future.
“I agree,” says Rod. “When I come back from my analysis of
these figures,” he says, indicating a large stack of material he has
unearthed from Fields field offices, “we’ll be able to deliver.”
Three weeks later, Rod returns to Clay with wilting confi-
dence. “I don’t know what to make of all this. I can’t seem to get at
what’s causing the company’s growth, or how it’s managed.
They’ve been expanding, but I’ve been through all the figures, and
nothing really seems to make sense yet.”
Clay listens empathetically, then says, “You’ve given me a
germ of an idea. What we need is some cross-pollination, a breath
of fresh air. We need to dig a little deeper. Did you examine any-
thing but their bottom line?”
Rod looks startled and replies, “No, I—uh—what do you mean?”
How can Clay Potts tactfully explain to Rod Golden that ex-
amination of qualitative as well as quantitative documents could be
important to delivering an accurate assessment of Fields’s potential
to be a more fruitful enterprise? In a paragraph, recommend some
specific documents that should be read. List the specific steps Rod
should follow in evaluating qualitative documents obtained from
Fields. Write a paragraph to explain how qualitative documents help
in presenting an overall account of Fields’s success.
138 PART II • INFORMATION REQUIREMENTS ANALYSIS
PAYMENT RECORD: Tot. 31175/0 + 81299 + Rent =
TOTAL INITIAL PAYMENT REQUIRED:
855 55
910
H/S dep.
4
Date Date Receipt Paid to Total Secur- Clean- 31700 81299 Other Amount Balance
Due Paid Number Noon Rent ity ing Tax Dates Amt. Descr. Amt. Paid Due
TV 10/3 MO! 8/28 8/28 106642 9/30 1031.32 202 115 44.20 25 414.82 15 1430.52 0
10/1 10/3 107503 10/31 910
910 0
11/1 11/1 10935 11/16 485.28
485.28 0
C1H/S9-16 11/17 11/8 11200 11/23 212.31
212.31 0
Bill 1 MO 11/24Prorated
H/S should becreated towardrefund deposit
BLDG. #
NAME
Orig. Move-in Date
d
Exp.
x #
Base Refrig- Furni-
Total Secur- Clean-
31700
Daily
Rent erator ture
Rent ity ing
Tax
Rate
8-28
same
1Kendall
1st
PROJ. NAME
#
KEY SIGNATURE
RENT POTENTIAL
1175/0 81299
PRORATE
A/C Util. HMSR T.V. Maid
31175/0 81299 Days
Totals
DEPOSITPOTENTIAL
Deposits
Memo Only
31175/0
OAK. FC 562
H/S
rent 30.33
1.30 910
39
200 115
31.63 340
910
1430.52
15.00
121.32
5.20
Watch for places
the computer can
simplify the work.
Observe the
number and type
of transactions.
Check for errors.
Look foropportunitiesfor improvementin design.
FIGURE 5.4
A manually completed payment
record.
members may want to collect and catalog a blank copy of each form (official or unofficial) that
is in use. (Sometimes businesses have a person already charged with forms management, who
would be your first source for forms in use.)
Blank forms, along with their instructions for completion and distribution, can be compared
with filled-in forms to see if any data items are consistently left blank on the forms; whether the
people who are supposed to receive the forms actually do get them; and if they follow standard
procedures for using, storing, and discarding them. Remember to print out any Web-based forms
that require users to print them. Alternatively, electronic versions that can be submitted via the
Web or email can be identified and stored in a database for later inspection.
To proceed when creating a catalog of forms to help you understand the information flow
currently in use in the business:
1. Collect examples of all the forms in use, whether officially sanctioned by the business or
not (official versus bootleg forms).
2. Note the type of form (whether printed in-house, handwritten, computer-generated in-
house, online forms, Web fill-in forms, printed externally and purchased, etc.).
3. Document the intended distribution pattern.
4. Compare the intended distribution pattern with who actually receives the form.
Although this procedure is time consuming, it is useful. Another approach is to sample data
capture forms that have already been completed. Remember to check databases that store con-
sumer data when sampling input from ecommerce transactions. The analyst must keep in mind
CHAPTER 5 • INFORMATION GATHERING: UNOBTRUSIVE METHODS 139
many particular questions, as illustrated in Figure 5.5. They include the following aspects of HCI
relating to usability, aesthetics, and usefulness:
1. Is the form filled out in its entirety? If not, what items have been omitted, and are they
consistently omitted? Why?
2. Are there forms that are never used? Why? (Check the design and appropriateness of each
form for its purported function.)
3. Are all copies of forms circulated to the proper people or filed appropriately? If not, why
not? Can people who must access online forms do so?
4. If there is a paper form that is offered as an alternative to a Web-based form, compare the
completion rates for both.
5. Are “unofficial” forms being used on a regular basis? (Their use might indicate a problem
in standard procedures or may indicate political battles in the organization.)
Date Store Name
Store NumberItem Requested Cases Item Requested CasesMilk (1/2 gals.)
Milk (quarts)Whole
Whole2%
2%1%
1%Skim
SkimButtermilk
Buttermilk
Chocolate
ChocolateYogurt
Plain
Pineapple
Vanilla
Dutch Apple
Peach
BananaBlueberry
Mixed Fruit
Boysenberry
Raspberry
Strawberry
Lemon
Ice Cream
Deluxe Pints
Deluxe Quarts
Deluxe 1/2 Gallons
Premium Pints
Skinny Minnies
Premium QuartsRequested by (employee number) Total Cases Ordered
Reason for Shortage
Driver Number Route Number
FarmfreshReorder of Shorted Dairy Products
Official form can
overwhelm people
by asking for too
much information.
There may be
no logical order
to the form.
Is the total
really needed?
“Bootleg” forms
arise to simplify
the problem.
Store
Date
Driver
Product shorted
Cases needed
Dairy manager’s initials
FIGURE 5.5
Questions to ask about official and
bootleg forms that are already
filled out.
140 PART II • INFORMATION REQUIREMENTS ANALYSIS
Analyzing Qualitative Documents
Qualitative documents include email messages, memos, signs on bulletin boards and in work ar-
eas, Web pages, procedure manuals, and policy handbooks. Many of these documents are rich in
details revealing the expectations for behavior of others that their writers hold and the ways in
which users expect to interact with information technologies.
Although many systems analysts are apprehensive about analyzing qualitative documents,
they need not be. Several guidelines can help analysts take a systematic approach to this sort of
analysis. Many of these relate to the affective, emotional, and motivational aspects of HCI, as well
as interpersonal relationships in the organization.
1. Examine documents for key or guiding metaphors.
2. Look for insiders versus outsiders or an “us against them” mentality.
3. List terms that characterize good or evil and appear repeatedly in documents.
4. Look for the use of meaningful messages and graphics posted on common areas or on
Web pages.
5. Recognize a sense of humor, if present.
Examining documents for key or guiding metaphors is done because language shapes behav-
ior; thus, the metaphors we employ are critical. For example, an organization that discusses em-
ployees as “part of a great machine” or “cogs in a wheel” might be taking a mechanistic view of
the organization. Notice that the guiding metaphor in the memo in Figure 5.6 is, “We’re one big
happy family.” The analyst can use this information to predict the kinds of metaphors that will be
persuasive in the organization. Obviously, if one department is battling another, it may be impos-
sible to gain any cooperation on a systems project until the politics are resolved in a satisfactory
manner. Assessing the use of humor provides a quick and accurate barometer of many HCI, in-
terpersonal, and organizational variables, including which subculture a person belongs to and
what kind of morale exists.
MEMOS. Along with the five preceding guidelines, the analyst should also consider who sends
memos and who receives them. Typically, most information flows downward and horizontally
rather than upward in organizations, and extensive email systems mean messages are sent to many
MEMO
To: All Night Call Desk StaffFrom: S. Leep, Night ManagerDate: 2/15/2010Re: Get Acquainted Party Tonight
It’s a pleasure to welcome two new 11-7 Call Desk staff members,
Twyla Tine and Al Knight. I’m sure they’ll enjoy working
here. Being together in the wee hours makes us feel like
one big happy family. Remember for your breaks tonight
that some of the crew has brought in food. Help yourself
to the spread you find in the break room, and welcome to
the clan, Twyla and Al.
FIGURE 5.6
Analysis of memos provides
insight into the metaphors that
guide the organization’s thinking.
CHAPTER 5 • INFORMATION GATHERING: UNOBTRUSIVE METHODS 141
work groups and individuals. Memos reveal a lively, continuing dialogue in the organization.
Analysis of memo content will provide you with a clear idea of the values, attitudes, and beliefs
of organizational members.
SIGNS OR POSTERS ON BULLETIN BOARDS OR IN WORK AREAS. Although signs may seem
incidental to what is happening in the organization, they serve as subtle reinforcers of values to
those who read them. Slogans posted such as “Quality Is Forever” or “Safety First” give the
analyst a sense of the official organizational culture.
CORPORATE WEB SITES. Web sites used for business-to-consumer (B2C) ecommerce as well as
those used for business-to-business (B2B) transactions should also be viewed by the analyst.
Examine the contents for metaphors, humor, use of design features (such as color, graphics,
animation, and hyperlinks), and the meaning and clarity of any messages provided. Think about
the Web site from three dimensions: technical, aesthetic, and managerial. Are there
discrepancies between the stated goals of the organization and what is presented to the intended
viewer? How much customization of the Web site is available for each user? How much
personalization of the Web site is possible? If you are not designing ecommerce sites for the
organization, how does what you see on its Web site affect the systems you are investigating?
Remember to note the level of interactivity of the Web site or sites, the accessibility of the
messages, and the security level.
MANUALS. Other qualitative documents the analyst should examine are organizational
manuals, including manuals for computer operating procedures and online manuals. Manuals
should be analyzed following the five guidelines spelled out previously. Remember that
manuals present the “ideal,” the way machines and people are expected to behave. It is
important to recall that printed manuals are rarely kept current and are sometimes relegated to
a shelf, unused.
POLICY HANDBOOKS. The last type of qualitative document we consider is the policy handbook.
Although these documents typically cover broad areas of employee and corporate behavior, you
can be primarily concerned with those that address policies about computer services, use, access,
security, and charges. Examining policies allows the systems analyst to gain an awareness of the
values, attitudes, and beliefs guiding the corporation.
H Y P E R C A S E ® E X P E R I E N C E 5 . 1
“We’re glad you find MRE an interesting place to consult. Ac-
cording to the grapevine, you’ve been busy exploring the home of-
fice. I know, there’s so much going on. We find it hard to keep track
of everything ourselves. One thing we’ve made sure of over the
years is that we try to use the methods that we believe in. Have you
seen any of our reports? How about the data that were collected on
one of Snowden’s questionnaires? He seems to favor questionnaires
over any other method. Some people resent them, but I think you
can learn a lot from the results. Some people have been good about
cooperating on these projects. Have you met Kathy Blandford yet?”
HYPERCASE Questions
1. Use clues from the case to evaluate the Training Unit’s
computer experience and its staff’s feeling about the PSRS.
What do you think the consensus is in the Training Unit
toward a computerized project tracking system?
2. What reports and statements are generated by the Training
Unit during project development? List each with a brief
description.
3. According to the interview results, what are the problems
with the present project tracking system in the Training Unit?
4. Describe the “project management conflict” at MRE. Who is
involved? Why is there a conflict?
5. How does the Management Systems Unit keep track of
project progress? Briefly describe the method or system.
142 PART II • INFORMATION REQUIREMENTS ANALYSIS
OBSERVING A DECISION MAKER’S BEHAVIOR
Observing decision makers, their physical environment, and their interaction with their physi-
cal, ergonomic environment is an important unobtrusive method for the systems analyst.
Through observing activities of decision makers, the analyst seeks to gain insight about what is
actually done, not just what is documented or explained. In addition, through observation of the
decision maker, the analyst attempts to see firsthand the relationships that exist between deci-
sion makers and other organizational members. Observation of decision makers’ interactions
with technologies can also reveal important clues regarding HCI concerns, such as how well the
system fits with the user.
Observing a Typical Manager’s Decision-Making Activities
Managers’ workdays have been described as a series of interruptions punctuated by short bursts
of work. In other words, pinning down what a manager “does” is a slippery proposition even un-
der the best of circumstances. For the systems analyst to grasp adequately how managers charac-
terize their work, interactive interviews and questionnaires are used. Observation, however,
allows the analyst to see firsthand how managers gather, process, share, and use information and
technology to get work done.
Although it is possible to describe and document how managers make decisions using boxes
and arrows, we are primarily describing humans and their activities. Therefore, we suggest that
systems analysts use a more humanistic approach to describe what managers do. This method is
called the analyst’s playscript. With this technique the “actor” is the decision maker who is ob-
served “acting” or making decisions. In setting up a playscript, the actor is listed in the left-hand
column and all his or her actions are listed in the right-hand column, as shown in Figure 5.7.
All activities are recorded with action verbs, so that a decision maker would be described as
“talking,” “sampling,” “corresponding,” and “deciding.”
Playscript is an organized and systematic approach that demands the analyst be able to un-
derstand and articulate the action taken by each observed decision maker. This approach eventu-
ally assists the systems analyst in determining what information is required for major or frequent
decisions made by the observed people. For instance, from the quality assurance manager exam-
ple in the playscript, it becomes clear that even though this decision maker is on the middle man-
agement level, he or she still requires a fair amount of external information to perform the
required activities of this specific job.
OBSERVING THE PHYSICAL ENVIRONMENT
Observing the activities of decision makers is just one way to assess their information require-
ments. Observing the physical environment where decision makers work also reveals much
about their human information requirements. Most often, such observing means systematically
examining the offices of decision makers, because offices constitute their primary workplace.
Decision makers influence and are in turn influenced by their physical environments and by
their interactions with the technology that takes place there. Many HCI concerns can be identi-
fied through structured observation and confirmed with other techniques, such as interviews or
questionnaires.
Structured Observation of the Environment (STROBE)
Film critics sometimes use a structured form of criticism called mise-en-scène analysis to system-
atically assess what is in a single shot of the film. They look at editing, camera angle, set decor,
and the actors and their costumes to find out how they are shaping the meaning of the film as in-
tended by the director. Sometimes the film’s mise-en-scène will contradict what is said in the di-
alogue. For information requirements analysis, the systems analyst can take on a role similar to
that of the film critic. It often is possible to observe the particulars of the surroundings that will
confirm or negate the organizational narrative (also called “stories” or “dialogue”) that is found
through interviews or questionnaires.
The method for STRuctured OBservation of the Environment is referred to as STROBE. Suc-
cessful application of STROBE requires that an analyst explicitly observe seven concrete ele-
CHAPTER 5 • INFORMATION GATHERING: UNOBTRUSIVE METHODS 143
ments commonly found in offices. The seven observable elements and some key questions that
may arise are listed in Figure 5.8. These elements can reveal much about the way a decision maker
gathers, processes, stores, and shares information, as well as about the decision maker’s credibil-
ity in the workplace.
OFFICE LOCATION. One of the first elements a systems analyst should observe is the location of
a particular decision maker’s office with respect to other offices. Accessible offices tend to
increase interaction frequency and informal messages, whereas inaccessible offices tend to
decrease the interaction frequency and increase task-oriented messages. Offices distributed along
the perimeter of the building usually result in a report or memo being held up in one of the offices,
whereas office clusters encourage information sharing. It is also likely that the people whose
Playscript
Analysis
Company:
Analyst: Scenario:
Date:
Solid Steel Shelving
Quality Assurance
L. Bracket
1/3/2010
Quality Assurance Asks shop floor supervisor for the dayʼs
Manager
production reportShop Floor
Prints out daily computerized production
Supervisor
report
Discusses recurring problems in production
runs with quality assurance (QA) managerQuality Assurance Reads production report
Manager
Compares current report with other reports
from the same week
Inputs data from daily production run into
QA model on computer
Observes onscreen results of QA model
Calls steel suppliers to discuss deviations
from quality standardsShop Floor
Attends meeting on new quality specifications
Supervisor
with quality assurance manager and vice
president of productionQuality Assurance Drafts letter to inform suppliers on new
Manager
quality specifications agreed on in meetingSends draft to vice president via emailVice President of Reads drafted letter
Production
Returns corrections and comments via email
Quality Assurance Reads corrected letter on email
Manager
Rewrites letter to reflect changes
Decision Maker (Actor) Information-Related Activity (Script)
FIGURE 5.7
A sample page from the analyst’s
playscript describing decision
making.
144 PART II • INFORMATION REQUIREMENTS ANALYSIS
offices are separated from others may tend to view the organization differently and so drift further
apart from other organization members in their objectives.
DESK PLACEMENT. Placement of a desk in the office can provide clues to the exercise of power by
the decision maker. Executives who enclose a visitor in a tight space with the visitor’s back to the
wall while allowing themselves a lot of room put themselves into the strongest possible power
position. An executive who positions his or her desk facing the wall with a chair at the side for a
visitor is probably encouraging participation and equal exchanges. The systems analyst should
notice the arrangement of the office furniture and in particular the placement of the desk. Figure 5.9
shows an example of desk placement as well as many of the other elements of STROBE, such as
props, stationary office equipment, lighting, color, and external sources of information.
Office location
Who has the corner office? Are the key
decision makers dispersed over separate
floors?
Desk placement
Does the placement of the desk encourage
communication? Does the placement
demonstrate power?
Stationary equipment
Does the decision maker prefer to gather
and store information personally? Is the
storage area large or small?
Props
Is there evidence that the decision maker
uses a PC, smartphone, or tablet computer
in the office?
External information sources
Office lighting and color
Clothing worn by decision makers
Does the decision maker get much
information from external sources such as
trade journals or the Web?
Is the lighting set up to do detailed work or
more appropriate for casual communication?
Are the colors warm and inviting?
Does the decision maker show authority by
wearing conservative suits? Are employees
required to wear uniforms?
Questions an Analyst Might InvestigateObservable Element
FIGURE 5.8
Seven concrete observable
elements of STROBE and
examples of questions an analyst
may want to ask.
*
SEKR
CD-RWs Fluorescent
lighting
Trade journals
in bookcase
PC
on desk
File cabinet
FIGURE 5.9
Observe a decision maker’s office
for clues concerning his or her
personal storage, processing, and
sharing of information.
CHAPTER 5 • INFORMATION GATHERING: UNOBTRUSIVE METHODS 145
STATIONARY OFFICE EQUIPMENT. File cabinets, bookshelves, and other large equipment for storing
items are all included in the category of stationary office equipment. If there is no such equipment, it
is likely the decision maker stores very few items of information personally. If there is an abundance
of such equipment, it is presumed the decision maker stores and values much information.
PROPS. The term props (an abbreviation of the theatre/film term properties) refers to all the small
equipment used to process information, including smartphones, calculators, PCs, pens, pencils,
C O N S U L T I N G O P P O R T U N I T Y 5 . 3
Don’t Bank on Their Self-Image
or Not Everything Is Reflected in a Mirror
“I don’t want any power here,” demurs Dr. Drew Charles, med-
ical director of the regional blood center where your systems group
has just begun a project. “I’m up to my neck in work just keeping
the regional physicians informed so they follow good blood-
banking practices,” he says, as he shields his eyes from the bright
sunlight streaming into his office. He clicks off the display con-
nected to his PC and turns his attention to you and the interview.
Dr. Charles is dressed in a conservative, dark wool suit and is
wearing a red-striped silk necktie. He continues, “In fact, I don’t
make decisions. I’m here purely in a positive support role.” He pulls
out the organizational chart shown in Figure 5.C1 to illustrate his
point. “It is as clear as a fracture. The chief administrator is the expert
on all administrative matters. I am the medical consultant only.”
Dr. Charles’s office is stacked high not only with medical jour-
nals such as Transfusion but also with yellowed copies of old BYTE
magazines and the latest issues of Business Week. Each Business Week
is opened to a different page, as if the doctor were in the process of de-
vouring each morsel of information. The overflow journals, however,
are not stored meticulously on metal bookshelves as expected. In sharp
contrast to the gleaming new equipment you saw being used in the
donor rooms, the journals are piled a foot high on an old blood-do-
nating bed that has been long retired from its intended use.
Next, you decide to interview the chief administrator, Craig
Bunker, to whom Dr. Charles has alluded. Fifteen minutes after the
scheduled start of your appointment, Bunker’s secretary, Dawn
Upshaw, finally allows you to enter his office. Bunker, who has just
finished a phone call, is dressed in a light-blue sport coat, checkered
slacks, light-blue shirt, and a necktie. “How are you doing? I’ve just
been checking around to see how everything’s perking along,” Bunker
says by way of introduction. He is outgoing and very friendly.
As you glance around the room, you notice that there are no
filing cabinets, nor is there a PC such as the one Dr. Charles was us-
ing. There are lots of photos of Craig Bunker’s family, but the only
item resembling a book or magazine is the center’s newsletter,
Bloodline. As the interview begins in earnest, Bunker cheerfully
launches into stories about the Pennsylvania Blood Center, where
he held the position of assistant administrator six years ago.
Finally, you descend the stairs to the damp basement level of
the Heath Lambert Mansion. The bloodmobiles have just returned,
and processed blood has been shipped to area hospitals. You decide
to talk with Sang Kim, a bloodmobile driver; Jenny McLaughlin,
the distribution manager; and Roberta Martin, a lab technician who
works the night shift.
Roberta begins, “I don’t know what we’d do without the doc-
tor.” In the same vein, though, Sang feeds the conversation by re-
marking, “Yeah, he helped us by thinking up a better driving
schedule last week.”
Jenny adds, “Dr. Charles is invaluable in setting the inventory
levels for each hospital, and if it wasn’t for him, we wouldn’t have
our new software, let alone our new network.”
As one of the systems analysis team members assigned to the
blood center project, develop an anecdotal checklist using
STROBE to help you systematically interpret the observations you
made about the offices of Dr. Charles and Craig Bunker. Consider
any disparities between a decision maker’s clothing, what a deci-
sion maker states, and what is said by others; between office loca-
tion and what is stated; and between office equipment and policies
stated. In addition, in a paragraph, suggest possible follow-up inter-
views and observations to help settle any unresolved questions.
Blood
Collection
Blood
Distribution
Accounting Computer
Systems
Secretarial Laboratory Nursing Research
Medical
Director
Chief
Administrator
FIGURE 5.C1
Organizational chart of the regional blood center.
146 PART II • INFORMATION REQUIREMENTS ANALYSIS
and rulers. The presence of handhelds, calculators, and PCs suggests that a decision maker who
possesses such equipment is more likely to use it personally than one who must leave the room
to use it.
EXTERNAL INFORMATION SOURCES. A systems analyst needs to know what type of information
is used by the decision maker. Observation of the type of publications stored in the office can
reveal whether the decision maker is looking for external information (found in trade journals,
news items about other companies in the industry, and so on) or relies more on internal
information (company reports, intraoffice correspondence, policy handbooks). The analyst
should also observe whether the decision maker prefers to get external information from the Web.
OFFICE LIGHTING AND COLOR. Lighting and color play an important role in how a decision maker
gathers information. An office lighted with warm, incandescent lighting indicates a tendency
toward more personal communication. An executive in a warmly lit office will gather more
information informally, whereas another organizational member working in a brightly lit, brightly
colored office may gather information through more formal memos and official reports.
CLOTHING WORN BY DECISION MAKERS. Much has been written about the clothing worn by
executives and others in authority. The systems analyst can gain an understanding of the
credibility exhibited by managers in the organization by observing the clothing they wear on the
job. The two-piece suit for a man or the skirted suit for a woman represents the maximum
authority, according to some researchers who have studied perceptions of executive appearance.
Casual dressing by leaders tends to open the door for more participative decision making, but such
attire often results in some loss of credibility in the organization if the predominant culture values
traditional, conservative clothing.
Through the use of STROBE, the systems analyst can gain a better understanding of how
managers gather, process, store, and use information. A summary of the characteristics exhibited
by decision makers and the corresponding observable elements is shown in Figure 5.10.
Applying Strobe
One way to implement STROBE is through the use of an anecdotal checklist with meaningful
shorthand symbols. This approach to STROBE was useful in ascertaining the information re-
quirements for four key decision makers in a franchise clothing store.
As Figure 5.11 shows, five shorthand symbols were used by the systems analysts to evaluate
how observation of the STROBE elements compared with the organizational narrative generated
through interviews. The five symbols are as follows:
1. A check mark means the narrative is confirmed.
2. An “X” means the narrative is reversed.
3. An oval or eye-shaped symbol serves as a cue for the systems analyst to look further.
Gathers information informally
Seeks extraorganizational information
Processes data personally
Stores information personally
Exercises power in decision making
Exhibits credibility in decision making
Shares information with others
Warm, incandescent lighting and colors
Trade journals present in office
PCs, or tablet computers present in office
Equipment/files present in office
Desk placed for power
Wears authoritative clothing
Office easily accessible
Corresponding Elements
in the Physical EnvironmentCharacteristics of Decision Makers
FIGURE 5.10
A summary of decision-maker
characteristics that correspond to
observable elements in the
physical environment.
CHAPTER 5 • INFORMATION GATHERING: UNOBTRUSIVE METHODS 147
M A C A P P E A L
Collecting data unobtrusively seems easy until one realizes that all the data collected must be organized,
stored, and retrieved for analysis. The simplest solution is software called Yojimbo from Bare Bones
software. It is inexpensive and easy to use. Just drag the items you want to collect into Yojimbo and
search for them when you want to retrieve them. A more structured approach is to use an application like
DEVONthink Professional Office. The metaphor of an office is a bit ambitious, because using the ap-
plication is more like tossing all sorts of data in a desk drawer, then figuring out how to organize it at a
later date. DEVONthink accepts Microsoft Word, Excel, and PowerPoint files as well as anything from
iWork. It can keep track of bookmarks and Web pages, images, and PDF files. A built-in OCR reader
helps input pages directly.
When it is time to access the information, DEVONthink can help a systems analyst search,
classify, and show relationships among items with the help of artificial intelligence. DEVONthink
doesn’t help an analyst determine the sample size or keep track of errors, but it does help collect,
store, retrieve, use, and share information gathered by the analyst.
FIGURE 5.MAC
DEVONthink Professional Office from DEVONtechnologies.
4. A square means observation of the STROBE elements modifies the narrative.
5. A circle means the narrative is supplemented by what is observed.
When STROBE is implemented in this manner, the first step is to write down key organiza-
tional themes growing out of interviews. Then the elements of STROBE are observed and
recorded. When narrative and observations are then compared, one of the five appropriate sym-
bols is used to characterize the relationship. The analyst thus creates a table that first documents
and then aids in the analysis of observations.
148 PART II • INFORMATION REQUIREMENTS ANALYSIS
Anecdotal List with Symbols for Applying STROBENarrative Portrayed byOrganization Members
Office Location
and Equipment
Office Lighting,
Color, and Graphics
Clothing of the
Decision Maker
Key
Confirm the narrative
Negate or reverse the narrative
Cue to look further
Modify the narrative
Supplement the narrative
Information is readilyflowing on all levels.
Adams says, “I figure outthe percentages myself.”
Vinnie says, “I like to readup on these things.”
Ed says, “The right handdoesn’t always know whatthe left hand is doing.”
Adams says, “Our companydoesn’t change much.”
The operations staffworks all night sometimes.
Vinnie says, “We do thingsthe way Mr. Adams wants to.”
Julie says, “Stanley doesn’tseem to care sometimes.”
FIGURE 5.11
An anecdotal list with symbols for
use in applying STROBE.
SUMMARY
This chapter has covered unobtrusive methods for information gathering, including sampling; investigation
of quantitative and qualitative data in current and archived forms; and the observation of the decision maker’s
activities through the use of the analyst’s playscript, as well as observation of the decision maker’s physical
environment through the use of STROBE.
The process of systematically selecting representative elements of a population is called sampling. The
purpose of sampling is to select and study documents such as invoices, sales reports, and memos, or perhaps
to select and interview, give surveys to, or observe members of the organization. Sampling can reduce cost,
speed data gathering, potentially make the study more effective, and possibly reduce the bias in the study.
A systems analyst must follow four steps in designing a good sample. First, there is a need for deter-
mining the population itself. Second, the type of sample must be decided. Third, the sample size is calcu-
lated. Finally, the data that need to be collected or described must be planned.
CHAPTER 5 • INFORMATION GATHERING: UNOBTRUSIVE METHODS 149
The types of samples useful to a systems analyst are convenience samples, purposive samples, simple
random samples, and complex random samples. The last type includes the subcategories of systematic sam-
pling and stratified sampling. There are several guidelines to follow when determining sample size.
Systems analysts need to investigate current and archival data and forms, which reveal where the orga-
nization has been and where its members believe it is going. Both quantitative and qualitative documents
H Y P E R C A S E ® E X P E R I E N C E 5 . 2
“We’re proud of our building here in Tennessee. In fact, we
used the architectural firm of I. M. Paid to carry the same theme,
blending into the local landscape while still reaching out to our
clients throughout all the branches. We get lots of people coming
through just to admire the building once they catch on to where it is
exactly. In fact, by Tennessee standards, we get so many sightseers
that it might as well be the pyramids! Well, you can see for yourself
as you go through. The East Atrium is my favorite place: plenty of
light, a huge skylight overhead. Yet it has always fascinated me that
the building and its furnishings might tell a story quite different
from the one its occupants tell.
“Sometimes employees complain that the offices all look the
same. The public rooms are spectacular, though. Even the canteen
is inviting. Most people can’t say that about their cafeterias at
work. You’ll notice that we all personalize our offices, anyway. So
even if the offices were of the ‘cookie cutter’ kind, their occu-
pants’ personalities seem to take over as soon as they have been
here a while. What have you seen? Was there anything that sur-
prised you so far?”
HYPERCASE Questions
1. Use STROBE to compare and contrast Evans’s and
Ketcham’s offices. What sort of conclusion about each
person’s use of information technology can you draw from
your observations? How compatible do Evans and Ketcham
seem in terms of the systems they use? What other clues to
their storage, use, and sharing of information can you
discover based on your observations of their offices?
2. Carefully examine Kathy Blandford’s office. Use STROBE
to confirm, reverse, or negate what you have learned during
your interview with her. List anything you found out about
Ms. Blandford from observing her office that you did not
know from the interview.
3. Carefully examine the contents of the MRE reception area
using STROBE. What inferences can you make about the
organization? List them. What interview questions would
you like to ask, based on your observations of the reception
area? Make a list of people you would like to interview and
the questions you would ask each of them.
FIGURE 5.HC1
There are hidden clues in HyperCase. Use STROBE to discover them.
150 PART II • INFORMATION REQUIREMENTS ANALYSIS
KEYWORDS AND PHRASES
analyst’s playscript
business-to-business (B2B) ecommerce
business-to-consumer (B2C) ecommerce
clothing worn by decision makers
cluster sampling
complex random sample
confidence level
convenience sample
corporate Web sites
desk placement
external information sources
office lighting and color
office location
props (handheld devices and PCs)
purposive sample
sample population
sampling
simple random sample
stationary office equipment
stratified sampling
STROBE
systematic observation
systematic sampling
REVIEW QUESTIONS
1. Define what is meant by sampling.
2. List four reasons why the systems analyst would want to sample data or select representative people
to interview.
3. What are the four steps to follow to design a good sample?
4. List the three approaches to complex random sampling.
5. Define what is meant by stratification of samples.
6. What effect on sample size does using a greater confidence level have when sampling attribute data?
7. What is the overriding variable that determines how many people the systems analyst should
interview in depth?
8. What information about the decision maker does the analyst seek to gain from observation?
9. List five steps to help the analyst observe the decision maker’s typical activities.
10. In the technique known as the analyst’s playscript, who is the actor?
11. In the analyst’s playscript, what information about managers is recorded in the right-hand column?
12. Noting that the idea of STROBE originally came from the world of film, what does the systems
analyst’s role resemble?
13. List the seven concrete elements of the decision maker’s physical environment that can be observed
by the systems analyst using STROBE.
PROBLEMS
1. Cheyl Stake is concerned that too many forms are being filled out incorrectly. She feels that about 8
percent of all the forms have an error.
a. How large a sample size should Ms. Stake use to be 99 percent certain she will be within 0.02?
b. How large a sample size should Ms. Stake use to be 90 percent certain she will be within 0.02?
c. Explain the difference between parts a and b in words.
d. Suppose Ms. Stake will accept a confidence level of 95 percent that she will be within 0.02.
What will the sample size of forms be now?
need to be analyzed. Because documents are persuasive messages, it must be recognized that changing them
might well change the organization.
Analysts use observation as an information-gathering technique. Through observation they gain insight
into what is actually done as users interact with information technology. One way to describe how decision
makers behave is to use an analyst’s playscript that documents each of the major players’ activities.
In addition to observing a decision maker’s behavior, the systems analyst should observe the decision
maker’s surroundings for important clues as to how well the system fits the user. One method is Structured
Observation of the Environment (STROBE). A systems analyst uses STROBE in the same way that a film
critic uses a method called mise-en-scène analysis to analyze a shot in a film.
Several concrete elements in the decision maker’s environment can be observed and interpreted. These
elements include (1) office location, (2) placement of the decision maker’s desk, (3) stationary office equip-
ment, (4) props such as handheld devices and PCs, (5) external information sources such as trade journals
and use of the Web, (6) office lighting and color, and (7) clothing worn by the decision maker. STROBE can
be used to gain a better understanding of how decision makers actually gather, process, store, and share in-
formation in order to get their work done.
CHAPTER 5 • INFORMATION GATHERING: UNOBTRUSIVE METHODS 151
2. “I see that you have quite a few papers there. What all do you have in there?” asks Betty Kant, head
of the MIS task force that is the liaison group between your systems group and Sawder’s Furniture
Company. You are shuffling a large bundle of papers as you prepare to leave the building.
“Well, I’ve got some financial statements, production reports from the last six months, and some
performance reports that Sharon gave me that cover goals and work performance over the last six
months,” you reply as some of the papers fall to the floor. “Why do you ask?”
Betty takes the papers from you and puts them on the nearest desk. She answers, “Because you
don’t need all this junk. You’re here to do one thing, and that’s talk to us, the users. Bet you can’t
read one thing in there that’ll make a difference.”
a. The only way to convince Betty of the importance of each document is to tell her what you are
looking for in each one. Use a paragraph to explain what each kind of document contributes to
the systems analyst’s understanding of the business.
b. While you are speaking with Betty, you realize you actually need other quantitative documents as
well. List any you are missing.
3. You’ve sampled the email messages that have been sent to several middle managers of Sawder’s
Furniture Company, which ships build-your-own particleboard furniture across the country. Here is
one that repeats a message found in several other memos:
To: Sid, Ernie, Carl
From: Imogene
Re: Computer/printer supplies
Date: November 10, 2009
It has come to my attention that I have been waging a war against requests for computer and printer
supplies (writable CDs, toner, paper, etc.) that are all out of proportion to what has been negotiated
for in the current budget. Because we’re all good soldiers here, I hope you will take whatever our
supply sergeant says is standard issue. Please, no “midnight requisitioning” to make up for shortages.
Thanks for being Gl in this regard; it makes the battle easier for us all.
a. What metaphor(s) is (are) being used? List the predominant metaphor and other phrases that play
on that theme.
b. If you found repeated evidence of this idea in other email messages, what interpretation would
you have? Use a paragraph to explain.
c. In a paragraph, describe how the people in your systems analysis group can use the information
from the email messages to shape their systems project for Sawder’s.
d. In interviews with Sid, Ernie, and Carl, there has been no mention of problems with obtaining
enough computer and printer supplies. In a paragraph, discuss why such problems may not come
up in interviews and discuss the value of examining email messages and other memos in addition
to interviewing.
4. “Here’s the main policy manual we’ve put together over the years for system users,” says Al
Bookbinder, as he blows the dust off the manual and hands it to you. Al is a document keeper for the
systems department of Prechter and Gumbel, a large manufacturer of health and beauty aids.
“Everything any user of any part of the system needs to know is in what I call the Blue Book. I mean
it’s chockablock with policies. It’s so big, I’m the only one with a complete copy. It costs too much to
reproduce it.” You thank Al and take the manual with you. When you read through it, you are
astonished at what it contains. Most pages begin with a message such as: “This page supersedes page
23.1 in manual Vol. II. Discard previous inserts; do not use.”
a. List your observations about the frequency of use of the Blue Book.
b. How user friendly are the updates in the manual? Write a sentence explaining your answer.
c. Write a paragraph commenting on the wisdom of having all-important policies for all systems
users in one book.
d. Suggest a solution that incorporates the use of online policy manuals for some users.
5. “I think I’ll be able to remember most everything he does,” says Ceci Awll. Ceci is about to interview
Biff Welldon, vice president of strategic planning of OK Corral, a steak restaurant chain with 130
locations. “I mean, I’ve got a good memory. I think it’s much more important to listen to what he
says than to observe what he does anyway.” As one of your systems analysis team members, Ceci has
been talking with you about the desirability of writing down her observations of Biff’s office and
activities during the interview.
a. In a paragraph, persuade Ceci that listening is not enough in interviews and that observing and
recording those observations are also important.
b. Ceci seems to have accepted your idea that observation is important but still doesn’t know what
to observe. Make a list of items and behaviors to observe, and in a sentence beside each behavior,
indicate what information Ceci should hope to gain through observation of it.
152 PART II • INFORMATION REQUIREMENTS ANALYSIS
6. “We’re a progressive company, always looking to be ahead of the power curve. We’ll give anything a
whirl if it’ll put us ahead of the competition, and that includes every one of us,” says I. B. Daring, an
executive with Michigan Manufacturing (2M). You are interviewing him as a preliminary step in a
systems project, one in which his subordinates have expressed interest. As you listen to I. B., you
look around his office to see that most of the information he has stored on shelves can be classified as
internal procedures manuals. In addition, you notice a PC on a back table of I. B.’s office. The
display screen is covered with dust, and the manuals stacked beside the PC are still encased in their
original shrink-wrap. Even though you know that 2M uses an intranet, no cables are visible going to
or from I. B.’s PC. On the wall behind I. B.’s massive mahogany desk you see five framed oil
portraits of 2M’s founders, all clustered around a gold plaque bearing the corporate slogan, which
states, “Make sure you’re right, then go ahead.”
a. What is the organizational narrative or storyline as portrayed by I. B. Daring? Rephrase it in your
own words.
b. List the elements of STROBE that you have observed during your interview with I. B.
c. Next to each element of STROBE that you have observed, write a sentence on how you would
interpret it.
d. Construct a table with the organizational story line down the left-hand side of the page and the
elements of STROBE across the top. Using the symbols from the “anecdotal list” application of
STROBE, indicate the relationship between the organizational story line as portrayed by I. B.
and each element you have observed (that is, indicate whether each element of STROBE
confirms, reverses, causes you to look further, modifies, or supplements the narrative).
e. Based on your observations of STROBE and your interview, state in a paragraph what problems
you are able to anticipate in getting a new system approved by I. B. and others. In a sentence or
two, discuss how your diagnosis might have been different if you had only talked to I. B. over
the phone or had read his written comments on a systems proposal.
GROUP PROJECTS
1. Assume your group will serve as a systems analysis and design team for a project designed to
computerize or enhance the computerization of all business aspects of a 15-year-old, national U.S.
trucking firm called Maverick Transport. Maverick is a less-than-a-truckload (LTL) carrier. The
people in management work from the philosophy of just in time (JIT), in which they have created a
partnership that includes the shipper, the receiver, and the carrier (Maverick Transport) for the
purpose of transporting and delivering the materials required just in time for their use on the
production line. Maverick maintains 626 tractors for hauling freight, and has 45,000 square feet of
warehouse space and 21,000 square feet of office space.
a. Along with your group members, develop a list of sources of archival data that should be
checked when analyzing the information requirements of Maverick.
b. When this list is complete, devise a sampling scheme that would permit your group to get a clear
picture of the company without having to read each document generated in its 15-year history.
2. Arrange to visit a local organization that is expanding or otherwise enhancing its information
systems. To allow your group to practice the various observation methods described in this chapter,
assign either of these two methods to each team member: (1) developing the analyst’s playscript, or
(2) using STROBE. Many of these strategies can be employed during one-on-one interviews,
whereas some require formal organizational meetings. Try to accomplish several objectives during
your visit to the organization by scheduling it at an appropriate time, one that permits all team
members to try their assigned method of observation. Using multiple methods such as interviewing
and observation (often simultaneously) is the only cost-effective way to get a true, timely picture of
the organization’s information requirements.
3. The members of your group should meet and discuss their findings after completing Project 2. Were
there any surprises? Did the information garnered through observation confirm, reverse, or negate
what was learned in interviews? Were any of the findings from the observational methods in direct
conflict with each other? Work with your group to develop a list of ways to address any puzzling
information (for example, by doing follow-up interviews).
CHAPTER 5 • INFORMATION GATHERING: UNOBTRUSIVE METHODS 153
SELECTED BIBLIOGRAPHY
Cooper, D. R., and P. S. Schindler, Business Research Methods. New York: McGraw-Hill/Irwin, 2007.
Edwards, A. and R. Talbot. The Hard-Pressed Researcher. New York: Longman, 1994.
Kendall, J. E. “Examining the Relationship Between Computer Cartoons and Factors in Information Systems
Use, Success, and Failure: Visual Evidence of Met and Unmet Expectations.” The DATA BASE for
Advances in Information Systems, Vol. 28, No. 2, Spring 1997, pp. 113–126.
Kendall, J. E., and K. E. Kendall. “Metaphors and Methodologies: Living Beyond the Systems Machine.”
MIS Quarterly, Vol. 17, No. 2, June 1993, pp. 149–171.
Kendall J. E., and K. E. Kendall. “Metaphors and Their Meaning for Information Systems Development.”
European Journal of Information Systems, 1994, pp. 37–47.
Kendall, K. E., and J. E. Kendall. “Observing Organizational Environments: A Systematic Approach for In-
formation Analysts.” MIS Quarterly, Vol. 5, No. 1, 1981, pp. 43–55.
Kendall, K. E., and J. E. Kendall. “STROBE: A Structured Approach to the Observation of the Decision-
Making Environment.” Information and Management, Vol. 7, No. 1, 1984, pp. 1–11.
Kendall, K. E., and J. E. Kendall. “Structured Observation of the Decision-Making Environment: A Valid-
ity and Reliability Assessment.” Decision Sciences, Vol. 15, No. 1, 1984, pp. 107–118.
Markus, M. L., and A. S. Lee. “Special Issue on Intensive Research in Information Systems: Using Quali-
tative, Interpretive, and Case Methods to Study Information Technology—Second Installment.” MIS
Quarterly, Vol. 24, No. 1, March 2000, p. 1.
Schultze, U. “A Confessional Account of an Ethnography About Knowledge Work.” MIS Quarterly, Vol. 24,
No. 1, March 2000, pp. 3–41.
Shultis, R. L. “‘Playscript’—A New Tool Accountants Need.” NAA Bulletin, Vol. 45, No. 12, August 1964,
pp. 3–10.
Webb, E. J., D. T. Campbell, R. D. Schwartz, and L. Sechrest. Nonreactive Measures in the Social Sciences,
2d ed. Stamford, CT: CENGAGE Learning, 1981.
E P I S O D E 5
CPU CASE
ALLEN SCHMIDT, JULIE E. KENDALL, AND KENNETH E. KENDALL
Seeing Is Believing
“Chip, I know the interviews took a long time, but they were worth it,” Anna says defensively as Chip enters
her office with a worried look on his face.
“I’m sure of that,” Chip says. “You really made a good impression on them. People have stopped me in
the hall and said they’re glad we’re working on the new system. I’m not worried about the interviews them-
selves. But I was concerned that we didn’t have time to discuss observations before you did them.”
“Rest assured, I was all eyes,” Anna laughs. “I used a technique called STROBE, or Structured Obser-
vation of the Environment, to see our decision maker’s habitats systematically. You’ll be interested in these
notes I wrote up for each person I interviewed,” says Anna, as she hands Chip her written, organized obser-
vations from each interview.
EXERCISES
These exercises require that you visit the Web site to obtain observations of the decision makers’ offices.
Please visit the Web site at www.pearsonhighered.com/kendall and look for “CPU Observations of Decision
Makers’ Offices.”
E-1. Based on Anna’s written observation of Dot’s office and clothing, use STROBE to analyze Dot as a
decision maker. In two paragraphs, compare and contrast what you learned in Dot’s interview and
what you learned via STROBE.
E-2. After examining Anna’s written observations about Mike Crowe’s office, use STROBE to analyze
Mike as a decision maker. What differences (if any) did you see between Mike in his interview and
Mike in Anna’s observations? Use two paragraphs to answer.
E-3. Use STROBE to analyze Anna’s written observations about Cher Ware and Paige Prynter. Use two
paragraphs to compare and contrast the decision-making style of each person as it is revealed by his
or her offices and clothing.
E-4. Use STROBE to analyze Anna’s written observations about Hy Perteks. Now compare your analysis
with Hy’s interview. Use two paragraphs to discuss whether STROBE confirms, negates, reverses, or
serves as a cue to look further in Hy’s narrative. (Include any further questions you would ask Hy to
clarify your interpretation.)
154 PART II • INFORMATION REQUIREMENTS ANALYSIS
www.pearsonhighered.com/kendall
155
C H A P T E R 6
Agile Modeling
and Prototyping
LEARNING OBJECTIVES
Once you have mastered the material in this chapter you will be able to:
1. Understand the roots of agile modeling in prototyping and the four main types of
prototyping.
2. Use prototyping for human information requirements gathering.
3. Understand the concept of RAD for use in human information requirements gathering and
interface design.
4. Understand agile modeling and the core practices that differentiate it from other
development methodologies.
5. Learn the importance of values critical to agile modeling.
6. Understand how to improve efficiency for users who are knowledge workers using either
structured methods or agile modeling.
This chapter explores agile modeling, which is a collection of innovative,
user-centered approaches to systems development. You will learn the val-
ues and principles, activities, resources, practices, processes, and tools as-
sociated with agile methodologies. Agile approaches have their roots in
prototyping, so this chapter begins with prototyping to provide a proper
context for understanding, and then takes up the agile approach in the last half of the chapter.
Prototyping of information systems is a worthwhile technique for quickly gathering spe-
cific information about users’ information requirements. Generally speaking, effective proto-
typing should come early in the SDLC, during the requirements determination phase.
Prototyping is included at this point in the text to underscore its importance as an
information-gathering technique. When using prototyping in this way, the systems analyst
is seeking initial reactions from users and management to the prototype, user suggestions
about changing or cleaning up the prototyped system, possible innovations for it, and revi-
sion plans detailing which parts of the system need to be done first or which branches of
an organization to prototype next.
One special instance of prototyping that uses an object-oriented approach is called rapid
application development (RAD). Prototyping and RAD can also be used as an alternative
method to SDLC.
156 PART II • INFORMATION REQUIREMENTS ANALYSIS
PROTOTYPING
As the systems analyst presenting a prototype of the information system, you are keenly inter-
ested in the reactions of users and management to the prototype. You want to know in detail how
they react to working with the prototype and how good the fit is between their needs and the pro-
totyped features of the system. Reactions are gathered through observation, interviews, and feed-
back sheets (possibly questionnaires) designed to elicit each person’s opinion about the prototype
as he or she interacts with it.
Information gathered in the prototyping phase allows the analyst to set priorities and redirect
plans inexpensively, with a minimum of disruption. Because of this feature, prototyping and plan-
ning go hand-in-hand.
Kinds of Prototypes
The word prototype is used in many different ways. Rather than attempting to synthesize all these
uses into one definition or trying to mandate one correct approach to the somewhat controversial
topic of prototyping, we illustrate how each of several conceptions of prototyping may be use-
fully applied in a particular situation, as shown in Figure 6.1.
PATCHED-UP PROTOTYPE. The first kind of prototyping has to do with constructing a system that
works but is patched up or patched together. In engineering this approach is referred to as
breadboarding: creating a patched-together, working model of an (otherwise microscopic)
integrated circuit.
An example in information systems is a working model that has all the necessary features but
is inefficient. In this instance of prototyping, users can interact with the system, getting accus-
tomed to the interface and types of output available. The retrieval and storage of information may
be inefficient, however, because programs were written rapidly with the objective of being work-
able rather than efficient.
Feature 3
Feature 1
Feature 5
Selected Features Prototype
Nonoperational PrototypePatched-Up Prototype
First-of-a-Series Prototype
Facility 3
Facility 2
Facility 1
Input Process Output
FIGURE 6.1
Four kinds of prototypes
(clockwise, starting from the
upper left).
CHAPTER 6 • AGILE MODELING AND PROTOTYPING 157
NONOPERATIONAL PROTOTYPE. The second conception of a prototype is that of a nonworking
scale model that is set up to test certain aspects of the design. An example of this approach is a
full-scale model of an automobile that is used in wind tunnel tests. The size and shape of the auto
are precise, but the car is not operational. In this case only features of the automobile essential to
wind tunnel testing are included.
A nonworking scale model of an information system might be produced when the coding re-
quired by the applications is too extensive to prototype but when a useful idea of the system can
be gained through the prototyping of the input and output only. In this instance, processing, be-
cause of undue cost and time, would not be prototyped. Users could still make decisions on the
utility of the system, based on their use of prototyped input and output.
FIRST-OF-A-SERIES PROTOTYPE. A third conception of prototyping involves creating a first full-
scale model of a system, often called a pilot. An example is prototyping the first airplane of a
series, then seeing if it flies before building a second. The prototype is completely operational and
is a realization of what the designer hopes will be a series of airplanes with identical features.
This type of prototyping is useful when many installations of the same information system
are planned. The full-scale working model allows users to experience realistic interaction with
the new system, but it minimizes the cost of overcoming any problems that it presents. For exam-
ple, when a retail grocery chain intends to use electronic data interchange (EDI) to check in sup-
pliers’ shipments in a number of outlets, a full-scale model might be installed in one store so users
could work through any problems before the system is implemented in all the others.
SELECTED FEATURES PROTOTYPE. A fourth conception of prototyping concerns building an
operational model that includes some, but not all, of the features that the final system will have.
An analogy would be a new retail shopping mall that opens before the construction of all shops
is complete.
When prototyping information systems in this way, some, but not all, essential features are
included. For example, users may view a system menu on a screen that lists six features: add a
record, update a record, delete a record, search a record for a key word, list a record, or scan a
record. In the prototyped system, however, only three of the six may be available for use, so that
the user may add a record (feature 1), delete a record (feature 3), and list a record (feature 5). User
feedback can help analysts understand what is working and what isn’t. It can also help with sug-
gestions on what features to add next.
When this kind of prototyping is done, the system is accomplished in modules so that if the
features that are prototyped are evaluated by users as successful, they can be incorporated into the
larger, final system without undertaking immense work in interfacing. Prototypes done in this
manner are part of the actual system. They are not just a mock-up as in nonoperational prototyp-
ing considered previously. Unless otherwise mentioned, all further references to prototyping in
this chapter refer to the selected-features prototype.
Prototyping as an Alternative to the SDLC
Some analysts argue that prototyping should be considered as an alternative to the SDLC. Recall
that the SDLC, introduced in Chapter 1, is a logical, systematic approach to follow in the devel-
opment of information systems.
Complaints about going through the SDLC process center around two interrelated concerns.
The first concern is the extended time required to go through the development life cycle. As the
investment of analyst time increases, the cost of the delivered system rises proportionately.
The second concern about using the SDLC is that user requirements change over time. Dur-
ing the long interval between the time that user requirements are analyzed and the time that the
finished system is delivered, user requirements are evolving. Thus, because of the extended de-
velopment cycle, the resulting system may be criticized for inadequately addressing current user
information requirements.
A corollary of the problem of keeping up with user information requirements is the sugges-
tion that users cannot really know what they do or do not want until they see something tangible.
In the traditional SDLC, it often is too late to change an unwanted system once it is delivered.
To overcome these problems, some analysts propose that prototyping be used as an alterna-
tive to the SDLC. When prototyping is used in this way, the analyst effectively shortens the time
158 PART II • INFORMATION REQUIREMENTS ANALYSIS
between ascertainment of human information requirements and delivery of a workable system. In
addition, using prototyping instead of the traditional SDLC might overcome some of the prob-
lems of accurately identifying user information requirements.
Drawbacks to supplanting the SDLC with prototyping include prematurely shaping a system
before the problem or opportunity being addressed is thoroughly understood. Also, using proto-
typing as an alternative may result in producing a system that is accepted by specific groups of
users but that is inadequate for overall system needs.
The approach we advocate here is to use prototyping as a part of the traditional SDLC. In this
view prototyping is considered as an additional, specialized method for ascertaining users’ infor-
mation requirements as they interact with prototypes and provide feedback for the analyst.
DEVELOPING A PROTOTYPE
Prototyping is a superb way to elicit feedback about the proposed system and about how readily
it is fulfilling the information needs of its users, as depicted in Figure 6.2. The first step of proto-
typing is to estimate the costs involved in building a module of the system. If costs of program-
mers’ and analysts’ time as well as equipment costs are within the budget, building of the
prototype can proceed. Prototyping is an excellent way to facilitate the integration of the infor-
mation system into the larger system and culture of the organization.
Modify your design
based on reactions
to your prototype
FIGURE 6.2
Analysts should modify their
original screen designs based on
user reactions to the prototype.
CHAPTER 6 • AGILE MODELING AND PROTOTYPING 159
Guidelines for Developing a Prototype
Once the decision to prototype has been made, four main guidelines must be observed when in-
tegrating prototyping into the requirements determination phase of the SDLC:
1. Work in manageable modules.
2. Build the prototype rapidly.
3. Modify the prototype in successive iterations.
4. Stress the user interface.
As you can see, the guidelines suggest ways of proceeding with the prototype that are necessar-
ily interrelated. Each guideline is explained in the following subsections.
WORKING IN MANAGEABLE MODULES. When prototyping some of the features of a system into
a workable model, it is imperative that the analyst work in manageable modules. One distinct
advantage of prototyping is that it is not necessary or desirable to build an entire working system
for prototype purposes.
A manageable module is one that allows users to interact with its key features but can be built
separately from other system modules. Module features that are deemed less important are pur-
posely left out of the initial prototype. As you will see later in this chapter, this is very similar to
the agile approach that emphasizes small releases.
BUILDING THE PROTOTYPE RAPIDLY. Speed is essential to the successful prototyping of an
information system. Recall that one complaint voiced against following the traditional SDLC is
that the interval between requirements determination and delivery of a complete system is far too
long to address evolving user needs effectively.
Analysts can use prototyping to shorten this gap by using traditional information-gathering
techniques to pinpoint salient information requirements, and then quickly make decisions that
bring forth a working model. In effect the user sees and uses the system very early in the SDLC
instead of waiting for a finished system to gain hands-on experience.
Putting together an operational prototype both rapidly and early in the SDLC allows the an-
alyst to gain valuable insight into how the remainder of the project should go. By showing users
very early in the process how parts of the system actually perform, rapid prototyping guards
against overcommitting resources to a project that may eventually become unworkable. Later,
C O N S U L T I N G O P P O R T U N I T Y 6 . 1
Is Prototyping King?
“As you know, we’re an enthusiastic group. We’re not a dynasty
yet, but we’re working on it,” Paul LeGon tells you. Paul (intro-
duced in Consulting Opportunity 2.3), at 24 years of age, is the “boy
king” of Pyramid, Inc., a small but successful independent book-
publishing firm that specializes in paperback books outside of the
publishing mainstream. As a systems analyst, you have been hired
by Pyramid, Inc., to help develop a computerized warehouse inven-
tory and distribution information system.
“We’re hiring lots of workers,” Paul continues, as if to con-
vince you of the vastness of Pyramid’s undertaking. “And we feel
Pyramid is positioned perfectly as far as our markets in the north,
south, east, and west are concerned.
“My assistant, Ceil Toom, and I have been slaving away, think-
ing about the new system. And we’ve concluded that what we re-
ally need is a prototype. As a matter of fact, we’ve tunneled through
a lot of material. Our fascination with the whole idea has really
pyramided.”
As you formulate a response to Paul, you think back over the
few weeks you’ve worked with Pyramid, Inc. You think that the
business problems its information system must resolve are very
straightforward. You also know that the people in the company are
on a limited budget and cannot afford to spend like kings. Actually,
the entire project is quite small.
Ceil, building on what Paul has said, tells you, “We don’t mean
to be too wrapped up with it, but we feel prototyping represents the
new world. And that’s where we all want to be. We know we need
a prototype. Have we convinced you?”
Based on Paul’s and Ceil’s enthusiasm for prototyping and
what you know about Pyramid’s needs, would you support con-
struction of a prototype? Why or why not? Formulate your decision
and response in a letter to Paul LeGon and Ceil Toom. Present a jus-
tification for your decision based on overall criteria that should be
met to justify prototyping.
160 PART II • INFORMATION REQUIREMENTS ANALYSIS
C O N S U L T I N G O P P O R T U N I T Y 6 . 2
Clearing the Way for Customer Links
World’s Trend (see Chapter 7 for a detailed corporate descrip-
tion) is building a Web site on which to sell clearance merchandise
usually sold through the Web and through its catalog operation. As
a newly hired Web consultant, Lincoln Cerf finds himself in a very
cold, wintry city, fighting his way through several inches of snow
to meet with one of the systems team members, Mary Maye, at
World’s Trend headquarters.
Mary welcomes Lincoln, saying, “At least the weather doesn’t
seem to affect our Web sales! They’re brisk no matter what.” Lin-
coln groans appreciatively at her weak attempt at humor, smiles,
and says, “I gathered from your email last week that you are trying
to determine the type of information that needs to be displayed on
our clearance Web site.”
Mary replies, “Yes, I’m trying to get it organized in the best pos-
sible way. Our customers are all so busy. I know photos of all our mer-
chandise can take a long time to appear on the page if a customer is
accessing the Web via a slower modem from home.” Mary continues
by saying, “Linc, I’m not even that concerned about how to design our
clearance site at this time. I am worried, though, about how much in-
formation we need to include on a page. For example, when items are
on clearance, not all colors and sizes are available. Which do you think
is better, to include some basic information and let the customer click
a button to ask for more information, or to be as complete as possible
on one page? If I use the linking method, then I could fit more items
on the screen . . . but it might be too orderly. Customers like the look
and feel of a sale in which merchandise is kind of jumbled together.”
Linc continues her line of thought, saying, “Yeah, I wonder
how customers want the information organized. Have you actually
watched them use the Web? I mean, do they look for shoes when
they buy a suit? If so, should shoes appear on the suit page or be
linked in some way?”
Mary comments, “Those are my questions, too. Then I wonder
if we should just try this approach for men’s clothes first, before we
implement it for women’s clothing. What if men’s and women’s ap-
proaches to shopping on the Web are different?”
As a third member of the World’s Trend Web site development
group, respond in a brief written report to Lincoln and Mary about
whether you should use a prototype to elicit recommendations from
potential customers about the proposed Web site. What type of pro-
totype is appropriate? Consider each form of prototype and explain
why each type would apply (or would not apply) to this problem.
Devote a paragraph to each explanation.
when RAD is discussed, you again see the importance of rapid systems building. In addition, ag-
ile modeling also builds on the practice of quick turnaround times.
MODIFYING THE PROTOTYPE. A third guideline for developing the prototype is that its
construction must support modifications. Making the prototype modifiable means creating it in
modules that are not highly interdependent. If this guideline is observed, less resistance is
encountered when modifications in the prototype are necessary.
The prototype is generally modified several times, going through several iterations. Changes
in the prototype should move the system closer to what users say is important. Each modification
necessitates another evaluation by users.
The prototype is not a finished system. Entering the prototyping phase with the idea that the
prototype will require modification is a helpful attitude that demonstrates to users how necessary
their feedback is if the system is to improve.
STRESSING THE USER INTERFACE. The user’s interface with the prototype (and eventually the
system) is very important. Because what you are really trying to achieve with the prototype is to get
users to further articulate their information requirements, they must be able to interact easily with the
system’s prototype. They should be able to see how the prototype will enable them to accomplish
their tasks. For many users the interface is the system. It should not be a stumbling block.
Although many aspects of the system will remain undeveloped in the prototype, the user in-
terface must be well developed enough to enable users to pick up the system quickly and not be
put off. Online, interactive systems using GUI interfaces are ideally suited to prototypes.
Chapter 14 describes in detail the considerations that are important in designing HCI.
Disadvantages of Prototyping
As with any information-gathering technique, there are several disadvantages to prototyping. The
first is that it can be quite difficult to manage prototyping as a project in the larger systems effort.
CHAPTER 6 • AGILE MODELING AND PROTOTYPING 161
The second disadvantage is that users and analysts may adopt a prototype as a completed system
when it is in fact inadequate and was never intended to serve as a finished system. Analysts need
to work to ensure that communication with users is clear regarding the timetable for interacting
with and improving the prototype.
The analyst needs to weigh these disadvantages against the known advantages when decid-
ing whether to prototype, when to prototype, and how much of the system to prototype.
Advantages of Prototyping
Prototyping is not necessary or appropriate in every systems project, as we have seen. The advan-
tages, however, should also be given consideration when deciding whether to prototype. The three
major advantages of prototyping are the potential for changing the system early in its develop-
ment, the opportunity to stop development on a system that is not working, and the possibility of
developing a system that more closely addresses users’ needs and expectations.
Successful prototyping depends on early and frequent user feedback, which analysts can use
to modify the system and make it more responsive to actual needs. As with any systems effort,
early changes are less expensive than changes made late in the project’s development. In the later
part of the chapter, you will see how the agile approach to development uses an extreme form of
prototyping that requires an on-site customer to provide feedback during all iterations.
Prototyping Using COTS Software
Sometimes the quickest way to prototype is through the modular installation of COTS soft-
ware. Although the concept of COTS software can be easily grasped by looking at familiar and
relatively inexpensive packages such as the Microsoft Office products, some COTS software
C O N S U L T I N G O P P O R T U N I T Y 6 . 3
To Hatch a Fish
“Just be a little patient. I think we need to add a few more features
before we turn it over to them. Otherwise, this whole prototype will
sink, not swim,” says Sam Monroe, a member of your systems
analysis team. All four members of the team are sitting together in
a hurriedly called meeting, and they are discussing the prototype
that they are developing for an information system to help managers
monitor and control water temperature, number of fish released,
and other factors at a large, commercial fish hatchery.
“They’ve got plenty to do already. Why, the system began with
four features and we’re already up to nine. I feel like we’re swim-
ming upstream on this one. They don’t need all that. They don’t
even want it,” argues Belle Uga, a second member of the systems
analysis team. “I don’t mean to carp, but just give them the basics.
We’ve got enough to tackle as it is.”
“I think Monroe is more on target,” volunteers Wally Ide, a
third member of the team, baiting Belle a little. “We have to show
them our very best, even if it means being a few weeks later in
hatching our prototype than we promised.”
“Okay,” Belle says warily, “but I want the two of you to tell
the managers at the hatchery why we aren’t delivering the proto-
type. I don’t want to. And I’m not sure they’ll let you off the hook
that easily.”
Monroe replies, “Well, I guess we could, but we probably
shouldn’t make a big deal out of being later than we wanted. I don’t
want to rock the boat.”
Wally chimes in, “Yeah. Why point out our mistakes to every-
one? Besides, when they see the prototype, they’ll forget any com-
plaints they had. They’ll love it.”
Belle finds a memo in her notebook from their last meeting
with the hatchery managers and reads it aloud. “Agenda for meet-
ing of September 22. ‘Prototyping—the importance of rapid devel-
opment, putting together the user analyst team, getting quick
feedback for modification. . . .’” Belle’s voice trails off, omitting
the last few agenda items. In the wake of her comments, Monroe
and Wally look unhappily at each other.
Monroe speaks first. “I guess we did try to get everyone
primed for receiving a prototype quickly and to be involved from
day one.” Noting your silence up until now, Monroe continues,
“But still waters run deep. What do you think we should do next?”
he asks you.
As the fourth member of the systems analysis team, what ac-
tions do you think should be taken? In a one- or two-paragraph
email message to your teammates, answer the following questions:
Should more features be added to the hatchery system prototype be-
fore giving it to the hatchery managers to experiment with? How
important is the rapid development of the prototype? What are the
trade-offs involved in adding more features to the prototype versus
getting a more basic prototype to the client when it was promised?
Complete your message with a recommendation.
162 PART II • INFORMATION REQUIREMENTS ANALYSIS
C O N S U L T I N G O P P O R T U N I T Y 6 . 4
This Prototype Is All Wet
“It can be changed. It’s not a finished product, remember,” af-
firms Sandy Beach, a systems analyst for RainFall, a large manu-
facturer of fiberglass bathtub and shower enclosures for bathrooms.
Beach is anxiously reassuring Will Lather, a production scheduler
for RainFall, who is poring over the first hard-copy output produced
for him by the prototype of the new information system.
“Well, it’s okay,” Lather says quietly. “I wouldn’t want to
bother you with anything. Let’s see, . . . yes, here they are,” he says
as he finally locates the monthly report summarizing raw materials
purchased, raw materials used, and raw materials in inventory.
Lather continues paging through the unwieldy computer print-
out. “This will be fine.” Pausing at a report, he remarks, “I’ll just
have Miss Fawcett copy this part for the people in Accounting.”
Turning a few more pages, he says, “And the guy in Quality Assur-
ance should really see this column of figures, although the rest of it
isn’t of much interest to him. I’ll circle it and make a copy of it for
him. Maybe I should phone part of this in to the warehouse, too.”
As Sandy prepares to leave, Lather bundles up the pages of the
reports, commenting, “The new system will be a big help. I’ll make
sure everybody knows about it. Anything will be better than the ‘old
monster’ anyway. I’m glad we’ve got something new.”
Sandy leaves Will Lather’s office feeling a little lost at sea.
Thinking it over, he starts wondering why Accounting, Quality As-
surance, and the warehouse aren’t getting what Will thinks they
should. Sandy phones a few people, and he confirms that what
Lather has told him is true. They need the reports and they’re not
getting them.
Later in the week Sandy approaches Lather about rerouting the
output as well as changing some of the features of the system. These
modifications would allow Lather to get onscreen answers regard-
ing what-if scenarios about changes in the prices suppliers are
charging or changes in the quality rating of the raw materials avail-
able from suppliers (or both), as well as allow him to see what
would happen if a shipment was late.
Lather is visibly upset with Sandy’s suggestions for altering
the prototype and its output. “Oh, don’t do it on my account. It’s
okay really. I don’t mind taking the responsibility for routing infor-
mation to people. I’m always showering them with stuff anyway.
Really, this is working pretty well. I would hate to have you take it
away from us at this point. Let’s just leave it in place.”
Sandy is pleased that Lather seems so satisfied with the proto-
typed output, but he is concerned about Lather’s unwillingness to
change the prototype, because he has been encouraging users to
think of it as an evolving product, not a finished one.
Write a brief report to Sandy listing changes to the prototype
prompted by Lather’s reactions. In a paragraph, discuss ways that
Sandy can calm Lather’s fears about having the prototype “taken
away.” Discuss in a paragraph some actions that can be taken before
a prototype is tried out to prepare users for its evolutionary nature.
is elaborate and expensive, but highly useful. One example of rapid implementation of COTS
software can be found in Catholic University’s use of the ERP COTS software package called
PeopleSoft, which is handling many of its Web-based functions.
Catholic University, along with a higher education consulting group and PeopleSoft, success-
fully undertook rapid implementation of a recruiting and admissions module of their COTS soft-
ware. They launched the implementation in April 1999, and by that October they had successfully
implemented recruiting and admissions for undergraduates. By November of the same year, they
implemented the same functions for graduate students. Other modules of the PeopleSoft COTS
software that are implemented at Catholic University include a complete online course catalog,
online registration, and the capability for students to check grades, transcripts, bills, and financial
aid payments online from anywhere.
Users’ Role in Prototyping
The users’ role in prototyping can be summed up in two words: honest involvement. Without user
involvement there is little reason to prototype. The precise behaviors necessary for interacting
with a prototype can vary, but it is clear that the user is pivotal to the prototyping process. Real-
izing the importance of the user to the success of the process, the members of the systems analy-
sis team must encourage and welcome input and guard against their own natural resistance to
changing the prototype.
There are three main ways a user can be of help in prototyping:
1. Experimenting with the prototype.
2. Giving open reactions to the prototype.
3. Suggesting additions to or deletions from the prototype.
CHAPTER 6 • AGILE MODELING AND PROTOTYPING 163
Users should be free to experiment with the prototype. In contrast to a mere list of systems
features, the prototype allows users the reality of hands-on interaction. Mounting a prototype on
an interactive Web site is one way to facilitate this interaction.
Another aspect of the users’ role in prototyping requires that they give open reactions to the
prototype. Analysts need to be present at least part of the time when experimentation is occur-
ring. They can then observe users’ interactions with the system, and they are bound to see inter-
actions they never planned. A filled-in form for observing user experimentation with the
prototype is shown in Figure 6.3. Some of the variables you should observe include user reac-
tions to the prototype, user suggestions for changing or expanding the prototype, user innovations
for using the system in completely new ways, and any revision plans for the prototype that aid in
setting priorities.
A third aspect of the users’ role in prototyping is their willingness to suggest additions to or
deletions from the features being tried. The analyst’s role is to elicit such suggestions by assuring
users that the feedback they provide is taken seriously, by observing users as they interact with
the system, and by conducting short, specific interviews with users concerning their experiences
with the prototype. Although users will be asked to articulate suggestions and innovations for the
prototype, in the end it is the analyst’s responsibility to weigh this feedback and translate it into
workable changes where necessary. To facilitate the prototyping process, the analyst must clearly
communicate the purposes of prototyping to users, along with the idea that prototyping is valu-
able only when users are meaningfully involved.
RAPID APPLICATION DEVELOPMENT
Rapid application development (RAD) is an object-oriented approach to systems development
that includes a method of development as well as software tools. It makes sense to discuss RAD
and prototyping in the same chapter, because they are conceptually very close. Both have as their
goal the shortening of time typically needed in a traditional SDLC between the design and imple-
mentation of the information system. Ultimately, both RAD and prototyping are trying to meet
Observer Name
DateSystem or Project Name
Company or Location
Program Name or Number
VersionUser 1 User 2 User 3 User 4
User Name
Period Observed
User Reactions
User Suggestions
Innovations
Revision Plans
Michael Cerveris
1/06/2010Cloud Computing Data Center Aquarius Water FiltersPrev. Maint.
1
Andy H. Pam H.1/06/2010 1/06/2010Generally
favorable,
got excited
about project
Excellent!
Add the date
when maintenance
was performed.
Place a form
number on top
for reference.
Place word
WEEKLY in title.
Modify on
1/08/2010
Review with
Andy and Pam.
Prototype Evaluation Form
FIGURE 6.3
An important step in prototyping
is to properly record user
reactions, user suggestions,
innovations, and revision plans.
164 PART II • INFORMATION REQUIREMENTS ANALYSIS
Identify Objectives
and Information
Requirements
Introduce the
New System
Build the
System
Requirements
Planning Implementation
RAD Design Workshop
Work with Users
to Design System
FIGURE 6.4
The RAD design workshop is the
heart of the interactive
development process.
rapidly changing business requirements more closely. Once you have learned the concepts of pro-
totyping, it is much easier to grasp the essentials of RAD, which can be thought of as a specific
implementation of prototyping.
Some developers are looking at RAD as a helpful approach in new ecommerce, Web-based
environments in which so-called first-mover status of a business might be important. In other
words, to deliver an application to the Web before their competitors, businesses may want their
development team to experiment with RAD.
Phases of RAD
There are three broad phases to RAD that engage both users and analysts in assessment, design,
and implementation. Figure 6.4 depicts these three phases. Notice that RAD involves users in
each part of the development effort, with intense participation in the business part of the design.
REQUIREMENTS PLANNING PHASE. In the requirements planning phase, users and analysts meet
to identify objectives of the application or system and to identify information requirements
arising from those objectives. This phase requires intense involvement from both groups; it is not
just signing off on a proposal or document. In addition, it may involve users from different levels
of the organization (as covered in Chapter 2). In the requirements planning phase, when
information requirements are still being addressed, you may be working with the CIO (if it is a
large organization) as well as with strategic planners, especially if you are working with an
ecommerce application that is meant to further the strategic aims of the organization. The
orientation in this phase is toward solving business problems. Although information technology
and systems may even drive some of the solutions proposed, the focus will always remain on
reaching business goals.
RAD DESIGN WORKSHOP. The RAD design workshop phase is a design-and-refine phase that can
best be characterized as a workshop. When you imagine a workshop, you know that participation
is intense, not passive, and that it is typically hands on. Usually participants are seated at round
tables or in a U-shaped configuration of chairs with attached desks where each person can see the
other and where there is space to work on a notebook computer. If you are fortunate enough to
have a group decision support systems (GDSS) room available at the company or through a local
university, use it to conduct at least part of your RAD design workshop.
During the RAD design workshop, users respond to actual working prototypes and analysts
refine designed modules (using some of the software tools mentioned later) based on user re-
sponses. The workshop format is very exciting and stimulating, and if experienced users and an-
alysts are present, there is no question that this creative endeavor can propel development forward
at an accelerated rate.
IMPLEMENTATION PHASE. In the previous figure, you can see that analysts are working with users
intensely during the workshop to design the business or nontechnical aspects of the system. As
soon as these aspects are agreed on and the systems are built and refined, the new systems or part
of systems are tested and then introduced to the organization. Because RAD can be used to create
CHAPTER 6 • AGILE MODELING AND PROTOTYPING 165
new ecommerce applications for which there is no old system, there is often no need to (and no
real way to) run the old and new systems in parallel before implementation.
By this time, the RAD design workshop will have generated excitement, user ownership, and
acceptance of the new application. Typically, change brought about in this manner is far less
wrenching than when a system is delivered with little or no user participation.
Comparing RAD to the SDLC
In Figure 6.5 you can compare the phases of the SDLC with those detailed for RAD at the begin-
ning of this section. Notice that the ultimate purpose of RAD is to shorten the SDLC and in this way
respond more rapidly to dynamic information requirements of organizations. The SDLC takes a
more methodical, systematic approach that ensures completeness and accuracy and has as its inten-
tion the creation of systems that are well integrated into standard business procedures and culture.
Introduce
the System
Introduce
the System
Work with Users
to Design System
Build the
System
RA
D
De
si
gn
W
or
ks
ho
p
Re
qu
ire
m
en
ts
P
la
nn
in
g
an
d
An
al
ys
is
P
ha
se
s
De
si
gn
, D
ev
el
op
m
en
t,
an
d
Do
cu
m
en
ta
tio
n
Ph
as
es
Identify Objectives
and Information
Requirements Identify
Opportunities
and
Objectives
Determine
Information
Requirements;
Develop E-R
Diagrams
Analyze Systems
Needs; Develop
DFDs and Data
Repositories
Design the
Recommended
System
Develop and
Document the
System
Test the
System
User Feedback
Use Input from Users
The RAD approach
allows for quick
development.
The SDLC approach
allows for careful
systematic analysis,
design, and
documentation of
systems.
FIGURE 6.5
The RAD design workshop and
the SDLC approach compared.
166 PART II • INFORMATION REQUIREMENTS ANALYSIS
The RAD design workshop phase is a departure from the standard SDLC design phases, be-
cause RAD software tools are used to generate screens and to exhibit the overall flow of the run-
ning of the application. Thus, when users approve this design, they are signing off on a visual
model representation, not just a conceptual design represented on paper, as is traditionally the case.
The implementation phase of RAD is in many ways less stressful than others, because the
users have helped to design the business aspects of the system and are well aware of what changes
will take place. There are few surprises, and the change is something that is welcomed. Often
when using the SDLC, there is a lengthy time during development and design when analysts are
separated from users. During this period, requirements can change and users can be caught off
guard if the final product is different than anticipated over many months.
WHEN TO USE RAD. As an analyst, you want to learn as many approaches and tools as possible
to facilitate getting your work done in the most appropriate way. Certain applications and systems
work will call forth certain methodologies. Consider using RAD when:
1. Your team includes programmers and analysts who are experienced with it; and
2. There are pressing business reasons for speeding up a portion of an application
development; or
3. When you are working with a novel ecommerce application and your development team
believes that the business can sufficiently benefit over their competitors from being an
innovator if this application is among the first to appear on the Web; or
4. When users are sophisticated and highly engaged with the organizational goals of the
company.
DISADVANTAGES OF RAD. The difficulties with RAD, as with other types of prototyping, arise
because systems analysts try to hurry the project too much. Suppose two carpenters are hired to
build two storage sheds for two neighbors. The first carpenter follows the SDLC philosophy,
whereas the second follows the RAD philosophy.
The first carpenter is systematic, inventorying every tool, lawn mower, and piece of patio fur-
niture to determine the correct size for the shed, designing a blueprint of the shed, and writing
specifications for every piece of lumber and hardware. The carpenter builds the shed with little
waste and has precise documentation about how the shed was built if anyone wants to build an-
other just like it, repair it, or paint it using the same color.
The second carpenter jumps right into the project by estimating the size of the shed, getting
a truckload of lumber and hardware, building a frame and discussing it with the owner of the prop-
erty as modifications are made when certain materials are not available, and making a trip to re-
turn the lumber not used. The shed gets built faster, but if a blueprint is not drawn, the
documentation never exists.
AGILE MODELING
Agile methods are a collection of innovative, user-centered approaches to systems development.
You will learn the values and principles, activities, resources, practices, processes, and tools as-
sociated with agile methodologies in the upcoming section. Agile methods can be credited with
many successful systems development projects and in numerous cases even credited with rescu-
ing companies from a failing system that was designed using a structured methodology.
Values and Principles of Agile Modeling
The agile approach is not based just on results. It is based on values, principles, and practices. Es-
sential to agile programming are stated values and principles that create the context for collabo-
ration among programmers and customers. In order to be agile analysts, you must adhere to the
following values and principles as developed by Beck (2000) in his work on agile modeling that
he called “extreme programming” or “XP.”
FOUR VALUES OF AGILE MODELING. There are four values that create an environment in which both
developers and businesses can be adequately served. Because there is often tension between what
developers do in the short term and what is commercially desirable in the long term, it is important
that you knowingly espouse values that will form a basis for acting together on a software project.
The four values are communication, simplicity, feedback, and courage, as shown in Figure 6.6.
CHAPTER 6 • AGILE MODELING AND PROTOTYPING 167
Let’s begin with communication. Every human endeavor is fraught with possibilities for mis-
communication. Systems projects that require constant updating and technical design are espe-
cially prone to such errors. Add to this tight project deadlines, specialized jargon, and the
stereotype that programmers would prefer to talk to machines rather than people, and you have
the potential for some serious communication problems. Projects can be delayed; the wrong prob-
lem can be solved; programmers are punished for even bringing up problems to managers; peo-
ple leave or join the project in midstream without proper updates; and so the litany goes.
Typical agile practices such as pair programming (two programmers collaborating, described
later in the chapter), estimating tasks, and unit testing rely heavily on good communication. Prob-
lems are fixed rapidly, holes are closed, and weak thinking is quickly strengthened through inter-
action with others on the team.
A second value of the agile approach is that of simplicity. When we are working on a soft-
ware development project, our first inclination is to become overwhelmed with the complexity
and bigness of the task. However, you cannot run until you know how to walk, nor walk until you
know how to stand. Simplicity for software development means that we will begin with the sim-
plest possible thing we can do.
The agile value of simplicity asks us to do the simplest thing today, with the understanding
that it might have to be changed a little tomorrow. This requires a clear focus on the goals of the
project and really is a basic value.
Feedback is the third basic value that is important when taking an extreme programming ap-
proach. When you think of feedback in this context, it is good to consider that feedback is
wrapped up with the concept of time. Good, concrete feedback that is useful to the programmer,
analyst, and customer can occur within seconds, minutes, days, weeks, or months, depending on
what is needed, who is communicating, and what will be done with the feedback. A fellow pro-
grammer may hand you a test case that breaks the code you wrote only hours before, but that feed-
back is almost priceless in terms of being able to change what is not working before it is accepted
and further embedded in the system.
Feedback occurs when customers create functional tests for all of the stories that program-
mers have subsequently implemented. (See more on user stories later in this chapter.) Critical
feedback about the schedule comes from customers who compare the goal of the plan to the
progress that has been made. Feedback helps programmers to make adjustments and lets the busi-
ness start experiencing very early on what the new system will be like once it is fully functional.
Courage is the fourth value enunciated in agile programming. The value of courage has to do
with a level of trust and comfort that must exist in the development team. It means not being afraid
to throw out an afternoon or a day of programming and begin again if all is not right. It means be-
ing able to stay in touch with one’s instincts (and test results) concerning what is working and
what is not.
Courage also means responding to concrete feedback, acting on your teammates’ hunch when
they believe that they have a simpler, better way to accomplish your goal. Courage is a high-risk,
high-reward value that encourages experimentation that can take the team to its goal more rapidly,
in an innovative way. Courage means that you and your teammates trust each other and your cus-
tomers enough to act in ways that will continuously improve what is being done on the project, even
if they require throwing out code, rethinking solutions, or further simplifying approaches. Courage
also implies that you, as a systems analyst, eagerly apply the practices of the agile approach.
Analysts can best reflect all of the four values through an attitude of humility. Historically,
computer software was developed by experts who often thought they knew how to run a business
Simplicity
Feedback
Co
mmunication
Courage
Agile
Values
FIGURE 6.6
Values are crucial to the agile
approach.
168 PART II • INFORMATION REQUIREMENTS ANALYSIS
better than the local customers who were the true domain experts. Computer experts were often
referred to as “gurus.” Some of the gurus displayed large egos and insisted on their infallibility,
even when customers did not believe it. Many gurus lacked the virtue of humility.
However, maintaining a humble attitude during systems development is critical. You must con-
tinually embrace the idea that if the user is expressing a difficulty, then that difficulty must be ad-
dressed. It cannot be ignored. Agile modelers are systems analysts who make suggestions, voice
opinions, but never insist that they are right 100 percent of the time. Agile modelers possess the self-
confidence to allow their customers to question, critique, and sometimes complain about the system
under development. Analysts learn from their customers, who have been in business a long time.
THE BASIC PRINCIPLES OF AGILE MODELING. In a perfect world, customers and your software
development team would see eye to eye and communication would not be necessary. We would
all be in agreement at all times. We know that the ideal world doesn’t exist. But how can we bring
our software development projects closer to the ideal? Part of why this will not happen is that so
far we are trying to operate on a vague system of shared values. They’re a good beginning, but
they are really not operationalized to the point at which we can measure our success in any
meaningful way. So we work to derive the basic principles that can help us check whether what
we are doing in our software project is actually measuring up to the values that we share.
Agile principles are the reflections and specifications of agile values. They serve as guide-
lines for developers to follow when developing systems. They also serve to set agile methodolo-
gies apart from the more traditional plan-driven methodologies such as SDLC as well as
object-oriented methodologies.
Agile principles were first described by Beck et al. and have evolved ever since. These prin-
ciples can be expressed in a series of sayings such as:
1. Satisfy the customer through delivery of working software
2. Embrace change, even if introduced late in development
3. Continue to deliver functioning software incrementally and frequently
4. Encourage customers and analysts to work together daily
5. Trust motivated individuals to get the job done
6. Promote face-to-face conversation
7. Concentrate on getting software to work
8. Encourage continuous, regular, and sustainable development
9. Adopt agility with attention to mindful design
10. Support self-organizing teams
11. Provide rapid feedback
12. Encourage quality
13. Review and adjust behavior occasionally, and
14. Adopt simplicity.
Often you will hear agile developers communicate their point through sayings like those
mentioned previously or even simpler phrases such as “model with a purpose,” “software is your
primary goal,” and “travel light,” a way of saying a little documentation is good enough. Listen
to these carefully. These sayings (some call them proverbs) are further discussed in Chapter 16
under an analysis and document tool called FOLKLORE. Catchy phrases are easy to understand,
easy to memorize, and easy to repeat. They are very effective.
Activities, Resources, and Practices of Agile Modeling
Agile modeling involves a number of activities that need to be completed sometime during the
agile development process. This section discusses these activities, the resources, and the practices
that are unique to the agile approach.
FOUR BASIC ACTIVITIES OF AGILE DEVELOPMENT. There are four basic activities of development
that agile methods use. They are coding, testing, listening, and designing. The agile analyst needs
to identify the amount of effort that will go into each activity and balance that with the resources
needed to complete the project.
Coding is designated as the one activity that it is not possible to do without. One author
states that the most valuable thing that we receive from code is “learning.” The process is basi-
CHAPTER 6 • AGILE MODELING AND PROTOTYPING 169
cally this: have a thought, code it, test it, and see whether the thought was a logical one. Code
can also be used to communicate ideas that would otherwise remain fuzzy or unshaped. When I
see your code, I may get a new thought. Source code is the basis for a living system. It is essen-
tial for development.
Testing is the second basic activity of development. The agile approach views automated
tests as critical. The agile approach advocates writing tests to check the coding, functionality, per-
formance, and conformance. Agile modeling relies on automated tests, and large libraries of tests
exist for most programming languages. These tests need to be updated as necessary during the
progress of the project.
There are both long-term and short-term reasons for testing. Testing in the short term pro-
vides you with extreme confidence in what you are building. If tests run perfectly you can con-
tinue on with renewed confidence. In the long term, testing keeps a system alive and allows you
to make changes longer than would be possible if no tests were written or run.
The third basic activity of development is listening. In Chapter 4, we learned about the im-
portance of listening during interviews. In the agile approach, listening is done in the extreme.
Developers use active listening to hear their programming partner. In agile modeling there is less
reliance on formal, written communication, and so listening becomes a paramount skill.
The developer also uses active listening with the customer. Developers assume that they know
nothing about the business they are helping, and so they must listen carefully to businesspeople to
get the answers to their questions. The developer needs to come to an understanding of what effec-
tive listening is. If you don’t listen, you will not know what you should code or what you should test.
The fourth basic activity in development is designing, which is a way of creating a structure
to organize all the logic in the system. Designing is evolutionary, and so systems that are designed
using the agile approach are conceptualized as evolving, always being designed.
Good design is often simple. Design should allow flexibility as well. Designing well permits
you to make extensions to the system by making changes only in one place. Effective design lo-
cates logic near the data on which it will be operating.Above all, design should be useful to all those
who will need it as the development effort proceeds, including customers as well as programmers.
FOUR RESOURCE CONTROL VARIABLES OF AGILE MODELING. Completing all the activities in the
project on time within all the constraints is admirable, but, as you probably have realized by now,
in order to accomplish this, project management is crucial. Managing a project doesn’t mean
simply getting all the tasks and resources together. It also means that the analyst is faced with a
number of trade-offs. Sometimes cost may be predetermined, at other junctures time may be the
most important factor. These resource control variables (time, cost, quality, and scope) are
discussed next.
TIME. You need to allow enough time to complete your project. Time, however, is split into many
separate pieces. You need time to listen to the customers, time to design, time to code, and time
to test.
One of our friends is an owner of a Chinese restaurant. Recently, he found himself short-
staffed as one of the members of his reliable crew returned to Hong Kong to get married. The
owner placed himself in the kitchen so the food was served on time, but stopped greeting his cus-
tomers out front in the usual way. He sacrificed the listening activity to achieve another, but in
this case he found out it was hurting his business. Customers wanted the attention.
It is the same in systems development. You can create quality software, but fail to listen. You
can design a perfect system, but not allow enough time to test it. Time is difficult to manage. If
you find yourself running short of time, what do you do?
The agile approach challenges the notion that more time will give you the results you want.
Perhaps the customer would prefer that you finish on time rather than extending the deadline to add
another feature. Customers, we often find, are happy if some of the functionality is up and running on
time. Our experience shows that often a customer is 80-percent satisfied with the first 20 percent of
the functionality. This means that when you complete the final 80 percent of the project, the customer
may be only slightly happier than he or she was after you completed the first 20 percent. The message
here is be careful not to extend your deadline. The agile approach insists on finishing on time.
COST. Cost is the second variable we can consider adjusting. Suppose that the activities of
coding, designing, testing, and listening are weighing the project down, and the resources we put
170 PART II • INFORMATION REQUIREMENTS ANALYSIS
into time, scope, and quality are not sufficient, even with a normal amount devoted to cost, to
balance the project. Essentially we might be required to contribute more resources that require
money to balance the project.
The easiest way to increase spending (and hence costs) is to hire more people. This may ap-
pear to be the perfect solution. If we hire more programmers, we’ll finish faster. Right? Not nec-
essarily. Picture hiring two people to repair a roof and increase that number to four. Soon the
people are bumping into one another. Furthermore, they need to ask each other what still needs
to be done. And if there’s a lightning storm, no one will be working. Going from two to four
doesn’t mean it will take half of the time. Consider the required increase in communication and
other intangible costs when you are considering hiring more people. Remember that when new
people join a team, they do not know the project or the team. They will slow the original mem-
bers down, because the original members must devote time to getting new members up to speed.
Overtime doesn’t help much either. It increases the cost, but the productivity doesn’t always
follow. Tired programmers are less effective than alert programmers. Tired programmers take a long
time to complete a task, and they also make mistakes that are even more time consuming to fix.
Is there anything else we can spend our money on? Perhaps.As you read later chapters you will
read about a variety of tools that support analysts and programmers. These tools are often a wise in-
vestment. Analysts, for example, use graphical packages such as Microsoft Visio to communicate
ideas about the project to others, and CASE tools such as VisibleAnalyst also help speed up projects.
Even new hardware could be a worthwhile expenditure. Laptops and smartphones improve
productivity away from the office. Larger visual displays, Bluetooth-enabled keyboards and
mice, and more powerful graphics cards can also increase productivity.
QUALITY. The third resource control variable is quality. If ideal systems are perfect, why is so
much effort placed in maintaining systems? Are we already practicing agile development by
sacrificing quality in software development? In Chapter 16 we will see the importance of quality
and methods (such as TQM and Six Sigma) that help ensure software quality is high.
The agile philosophy, however, does allow the analyst to adjust this resource, and perhaps put
less effort into maintaining quality than otherwise would be expected. Quality can be adjusted both
internally and externally. Internal quality involves testing software for factors such as functionality
(Does a program do what it is supposed to do?) and conformance (Does the software meet certain
conformance standards and is it maintainable?). It usually doesn’t pay to tinker with internal quality.
That leaves us with external quality, or how the customer perceives the system. The customer
is interested in performance. Some of the questions a customer may ask are: Does the program
act reliably (or do software bugs still exist)? Is the output effective? Does the output reach me on
time? Does the software run effortlessly? Is the user interface easy to understand and use?
The extreme philosophy of agile development allows some of the external quality issues to
be sacrificed. In order for the system to be released on time, the customer may have to contend
with some software bugs. If we want to meet our deadline, the user interface may not be perfect.
We can make it better in a follow-up version.
Commercial off-the-shelf software manufacturers do sacrifice quality, and it is debatable
whether this is the correct approach. So don’t be surprised when your PC software applications
(not to mention your operating system and Web browser) are updated often, if developers are us-
ing extreme programming as one of their agile practices.
SCOPE. Finally, there is scope. In the agile approach, scope is determined by listening to
customers and getting them to write down their stories. Then the stories are examined to see how
much can be done in a given time to satisfy the customer. Stories should be brief and easy to grasp.
Stories will be described in more detail later in this chapter, but here is a brief example showing
four short stories from an online air travel system. Each story is shown in bold type:
Display alternative flights.
Prepare a list of the five cheapest flights.
Offer cheaper alternatives.
Suggest to customers that they travel on other days, make weekend stays, take special
promotions, or use alternate airports.
Purchase a ticket.
Allow the customer to purchase a ticket directly using a credit card (check validity).
CHAPTER 6 • AGILE MODELING AND PROTOTYPING 171
Allow the customer to choose his or her seat.
Direct the customer to a visual display of the airplane and ask the customer to select
a seat.
Ideally, the analyst would be able to determine how much time and money was needed to
complete each of these stories and be able to set the level of quality for them as well. It is obvi-
ous that this system must not sacrifice quality, or credit card purchases may be invalid or cus-
tomers may show up at the airport without reservations.
Once again agile practices allow extreme measures, so in order to maintain quality, manage
cost, and complete the project on time, the agile analyst may want to adjust the scope of the proj-
ect. This can be accomplished by agreeing with the customer that one or more of the stories can
be delayed until the next version of the software. For example, maybe the functionality of allow-
ing customers to choose their own seats can be put off for another time.
In summary, the agile analyst can control any of the four resource variables of time, cost,
quality, and scope. Agility calls for extreme measures and places a great deal of importance on
completing a project on time. In doing so, sacrifices must be made and the agile analyst will find
out that the trade-offs available involve difficult decisions.
FOUR CORE AGILE PRACTICES. Four core practices markedly distinguish the agile approach from
other approaches: short releases; the 40-hour workweek; hosting an onsite customer; and using
pair programming.
1. Short releases means that the development team compresses the time between releases of
their product. Rather than releasing a full-blown version in a year, using the short release
practice they will shorten the release time by tackling the most important features first,
releasing that system or product, and then improving it later.
2. Forty-hour workweek means that agile development teams purposely endorse a cultural
core practice in which the team works intensely together during a typical 40-hour
workweek. As a corollary to this practice, the culture reinforces the idea that working
overtime for more than a week in a row is very bad for the health of the project and the
developers. This core practice attempts to motivate team members to work intensely at the
job, and then to take time off so that when they return they are relaxed and less stressed.
This helps team members spot problems more readily, and prevents costly errors and
omissions due to ineffectual performance or burnout.
3. Onsite customer means that a user who is an expert in the business aspect of the systems
development work is onsite during the development process. This person is integral to the
process, writes user stories, communicates to team members, helps prioritize and balance the
long-term business needs, and makes decisions about which feature should be tackled first.
4. Pair programming is an important core practice. It means that you work with another
programmer of your own choosing. You both do coding, you both run tests. Often the
senior person will take the coding lead initially, but as the junior person becomes involved,
whoever has the clear vision of the goal will typically do the coding for the moment. When
you ask another person to work with you, the protocol of pair programming says he or she
is obligated to consent. Working with another programmer helps you clarify your thinking.
Pairs change frequently, especially during the exploration stage of the development
process. Pair programming saves time, cuts down on sloppy thinking, sparks creativity, and
is a fun way to program.
How core agile practices interrelate with and support agile development activities, resources,
and values is shown in Figure 6.7.
The Agile Development Process
Modeling is a keyword in agile methods. Agile modeling seizes on the opportunity to create mod-
els. These can be logical models such as drawings of systems, or mock-ups such as the prototypes
described earlier in this chapter. A typical agile modeling process would go something like this:
1. Listen for user stories from the customer.
2. Draw a logical workflow model to gain an appreciation for the business decisions
represented in the user story.
3. Create new user stories based on the logical model.
172 PART II • INFORMATION REQUIREMENTS ANALYSIS
4. Develop some display prototypes. In doing so, show the customers what sort of interface
they will have.
5. Using feedback from the prototypes and the logical workflow diagrams, develop the
system until you create a physical data model.
Agile is the other keyword in agile modeling. Agile implies maneuverability. Today’s sys-
tems, especially those that are Web-based, pose twin demands: getting software released as soon
as possible and continually improving the software to add new features. The systems analyst
needs to have the ability and methods to create dynamic, context-sensitive, scalable, and evolu-
tionary applications. Agile modeling as such is a change-embracing method.
WRITING USER STORIES. Even though the title of this section is “Writing User Stories,” the
emphasis in the creation of user stories is on spoken interaction between developers and
users, not the written communication. In user stories, the developer is seeking first and
foremost to identify valuable business user requirements. Users will typically engage in
conversations every day with the developers about the meaning of the user stories they have
written. These frequent conversations are purposeful interactions that have as their goal the
prevention of misunderstandings or misinterpretations of user requirements. Therefore, user
stories serve as reminders to the developers that they must hold conversations devoted to
those requirements.
The following is an example of a series of stories written for an ecommerce application for
an online merchant of books, CDs, and other media products. The stories give a fairly complete
picture of what is needed at each of the stages in the purchase process, but the stories are very
short and easy to comprehend. The point here is to get all the needs and concerns of the online
store out in the open. Although there is not enough of a story to begin programming, an agile
40-Hour Work Week
Onsite Custo
mer
Sh
ort
Release
Pair Programming
Cost
Quality
Tim
e
Scope
Testing
Listening
Coding
Designing
Agile Activities
Agile Core Practices
Agile Resources
Simplicity
Feedback
Co
mmunication
Courage
Agile Values
FIGURE 6.7
The core practices are interrelated
with agile modeling’s resources,
activities, and values.
CHAPTER 6 • AGILE MODELING AND PROTOTYPING 173
M A C A P P E A L
Just as agile methodologies are an alternative to the SDLC, OmniFocus is an alternative to Microsoft
Project or other Gantt Chart or PERT diagram approaches.
A casual observer might think that agile methods are unstructured because systems are built
without detailed specifics and documentation. A student of agile methods realizes that there is actu-
ally quite a bit of structure in the agile approach. Principles include sticking to the 40-hour workweek
and coordination through pair-programming. An analyst who adopts agile techniques needs a way to
set goals, keep within budget, set priorities for features, and find a way to get things done.
OmniFocus is based on an alternative task management system by David Allen, called Getting
Things Done. The overriding principle is to free your mind from remembering things, so that you can
concentrate on completing them. An analyst using this system would go through five actions: collect,
process, organize, review, and do.
Systems analysts using OmniFocus would collect items from their Web browser, their address
book or their calendar, or most applications on a Mac. The analyst can categorize it or assign it to a
larger project. OmniFocus contains a planning mode so the analyst can see which task is part of a
larger project and a context mode that organizes the tasks so the analyst knows all the tasks that must
be done either by phone, by browsing the Web, or by using email. OmniFocus is also available as an
iPhone app.
developer might begin to see the overall picture clearly enough to begin estimating what it
takes to complete the project. The stories are as follows:
Welcome the customer.
If the customer has been at this site before using this same computer, welcome the
customer back to the online store.
Show specials on homepage.
Show any recent books or other products that have recently been introduced. If the
customer is identified, tailor the recommendations to that specific customer.
FIGURE 6.MAC
OmniFocus from The Omni Group.
174 PART II • INFORMATION REQUIREMENTS ANALYSIS
Search for desired product.
Include an effective search engine that will locate the specific product and similar products.
Show matching titles and availability.
Display the results of the search on a new Web page.
Allow customer to ask for greater detail.
Offer the customer more product details, such as sample pages in a book, more photos
of a product, or to play a partial track from a CD.
Display reviews of the product.
Share the comments that other customers have about the product.
Place a product into a shopping cart.
Make it easy for the customer to click on a button that places the product into a
shopping cart of intended purchases.
Keep purchase history on file.
Keep details about the customer and his or her purchases in a cookie on the customer’s
computer. Also keep credit card information for faster checkout.
Suggest other books that are similar.
Include photos of other books that have similar themes or were written by the same
authors.
Proceed to checkout.
Confirm the identity of the customer.
Review the purchases.
Allow the customer to review the purchases.
Continue shopping.
Offer the customer a chance to make further purchases at the same time.
Apply shortcut methods for faster checkout.
If the identity of the customer is known and the delivery address matches, speed up the
transaction by accepting the credit card on file and the remainder of the customer’s
preferences, such as shipping method.
Add names and shipping addresses.
If the purchase is a gift, allow the customer to enter the name and address of the recipient.
Offer options for shipping.
Allow the customer to choose a shipping method based on cost.
Complete the transaction.
Finish the transaction. Ask for credit card confirmation if the shipping address is
different from the customer’s address on file.
As you can easily see, there is no shortage of stories. The agile analyst needs to choose a few
stories, complete the programming, and release a product. Once this is done, more stories are se-
lected and a new version is released until all the stories are included in the system (or the analyst and
customer agree that a particular story lacks merit, or is not pressing, and so need not be included).
An example of a user story as it might appear to an agile developer is shown in Figure 6.8.
On cards (or electronically), an analyst might first identify the need or opportunity, and then fol-
low it with a brief story description. The analyst might take the opportunity to begin thinking
broadly about the activities that need to be completed as well as the resources it will take to fin-
ish the project. In this example from the online merchant, the analyst indicates that the designing
activity will take above-average effort, and the time and quality resources are required to rise
above average. Notice that the analyst is not trying to be more precise than currently possible on
this estimate, but it is still a useful exercise.
SCRUM. Another agile approach is named Scrum. The word scrum is taken from a starting
position in rugby in which the rugby teams form a huddle and fight for possession of the ball.
Scrum is really about teamwork, similar to what is needed in playing a game of rugby.
CHAPTER 6 • AGILE MODELING AND PROTOTYPING 175
Need or Opportunity: Apply shortcut methods for faster checkout.Story:
Well Below
Coding
Activities:
Testing
Listening
Designing
TimeResources:
Cost
Quality
Scope
Below Average Average Above Average Well Above
If the identity of the customer is known and the delivery address matches, speed up the
transaction by accepting the credit card on file and the rest of the customer’s preferences
such as shipping method.
FIGURE 6.8
User stories can be recorded on
cards. The user story should be
brief enough for an analyst to
determine what systems features
are needed.
Just as rugby teams will come to a game with an overall strategy, development teams begin
the project with a high-level plan that can be changed on the fly as the “game” progresses. Sys-
tems development team members realize that the success of the project is most important, and
their individual success is secondary. The project leader has some, but not much, influence on the
detail. Rather, the tactical game is left up to the team members, just as if they were on the field.
The systems team works within a strict time frame (30 days for development), just as a rugby
team would play in a strict time constraint of a game.
We can describe the components of the scrum methodology as:
1. Product backlog, in which a list is derived from product specifications.
2. Sprint backlog, a dynamically changing list of tasks to be completed in the next sprint.
3. Sprint, a 30-day period in which the development team transforms the backlog into
software that can be demonstrated.
4. Daily scrum, a brief meeting in which communication is the number-one rule. Team
members need to explain what they did since the last meeting, whether they encountered
any obstacles, and what they plan to do before the next daily scrum.
5. Demo, working software that can be demonstrated to the customer.
Scrum is indeed a high-intensity methodology. It is just one of the approaches that adopts the
philosophy of agile modeling.
Lessons Learned from Agile Modeling
Often posed as an alternative way to develop systems, the agile approach seeks to address com-
mon complaints arising over the traditional SDLC approach (for being too time-consuming, fo-
cusing on data rather than on humans, and being too costly) by being rapid, iterative, flexible, and
participative in responding to changing human information requirements, business conditions,
and environments.
Several agile development projects have been chronicled in books, articles, and on Web sites.
Many of them were successes, some have been failures, but we can learn a great deal from study-
ing them, as well as the agile values, principles, and core practices. Following are the six major les-
sons we draw from our examination of agile modeling. Figure 6.9 depicts the six lessons.
The first lesson is that short releases allow systems to evolve. Product updates are made of-
ten, and changes are incorporated quickly. In this way the system is permitted to grow and expand
in ways that the customer finds useful. Through the use of short releases, the development team
compresses the time between releases of their product, improving the product later as the dynamic
situation demands.
The second lesson is that pair programming enhances overall quality. Although pair program-
ming is controversial, it clearly fosters other positive activities necessary in systems development
176 PART II • INFORMATION REQUIREMENTS ANALYSIS
Balanced resources
and activities support
project goals
Onsite customers
are mutually
beneficial
Lessons Gained
from Adopting
Agile Methods
Agile values are
crucial to
success
Pair programming
enhances overall
quality
Short releases
allow systems
to evolve
40-hour
workweek improves
effectiveness
FIGURE 6.9
There are six vital lessons that can
be drawn from the agile approach
to systems.
such as good communication, identifying with the customer, focusing on the most valuable as-
pects of the project first, testing all code as it is developed, and integrating the new code after it
successfully passes its tests.
The third lesson is that onsite customers are mutually beneficial to the business and the ag-
ile development team. Customers serve as a ready reference and reality check, and the focus of
the system design will always be maintained via their presence: customers become more like de-
velopers and developers empathize more fully with customers.
The fourth lesson we take from the agile approach is that the 40-hour workweek improves
effectiveness. Even the hardest-hitting developers are susceptible to errors and burnout if they
work too hard for too long a period. When the development team is together, however, every
moment counts. Working at a sustainable pace is much more desirable for the life of the proj-
ect, the life of the system, and the life of the developer! We all know the parable of the hare
and the tortoise.
The fifth lesson we draw from taking the agile approach is that balanced resources and ac-
tivities support project goals. Managing a project doesn’t mean simply getting all resources and
tasks together. It also means that the analyst is faced with a number of trade-offs. Sometimes cost
may be predetermined, at other junctures time may be the most important factor. The resource
control variables of time, cost, quality, and scope need to be properly balanced with the activities
of coding, designing, testing, and listening.
The last lesson we take from agile modeling approaches is that agile values are crucial to suc-
cess. It is essential to the overall success of the project that analysts wholeheartedly embrace the
values of communication, simplicity, feedback, and courage in all the work that they do. This type
of personal and team commitment enables the analyst to succeed where others, who possess sim-
ilar technical competencies but who lack values, will fail. True dedication to these values is fun-
damental to successful development.
COMPARING AGILE MODELING AND STRUCTURED METHODS
As you have seen, agile methods are developed quickly; they reportedly work; and users are cus-
tomers who are directly involved. While it is true that projects developed by agile methods often
require tweaking to work properly, agile developers admit that tweaking is part of the process.
The agile approach implies many short releases with features added along the way.
CHAPTER 6 • AGILE MODELING AND PROTOTYPING 177
Improving Efficiency in Knowledge Work: SDLC Versus Agile
Researchers (Davis & Naumann, 1999) developed a list of seven strategies that can improve
the efficiency of knowledge work: reducing interface time and errors; reducing process learn-
ing time and dual processing losses; reducing time and effort to structure tasks and format out-
puts; reducing nonproductive expansion of work; reducing data and knowledge search and
storage time and costs; reducing communication and coordination time and costs; and reducing
losses from human information overload. They believe this is important, since based on their
study of a group of programmers, they claim that the best programmers are five to ten times
more productive than the worst ones. They further point out this ratio is only two to one for
workers in clerical or physical tasks. Their suggestion is that software can help improve many
situations.
We use the standard, traditional systems development approach of structured methods to
compare and contrast how structured approaches versus agile methods would implement the
seven strategies proposed to improve the efficiency of knowledge workers.
While adopting more software may indeed improve performance, it is reasonable to suggest
that changing an approach or methodology may also improve performance. Consequently, we
will examine each aspect of knowledge work productivity through lenses from both structured
and agile methodologies. Figure 6.10 lists the original seven strategies for productivity improve-
ment and then explains what methods are used to improve the efficiency of systems development
for both structured and agile methodologies.
In the upcoming sections we will compare and contrast structured approaches with the agile
approach. An overarching observation about the agile methodology is that it is a human-oriented
approach that permits people to create nuanced solutions that are impossible to create through for-
mal specifications of process.
REDUCING THE INTERFACE TIME AND ERRORS. Systems analysts and programmers need to
analyze, design, and develop systems using knowledge work tools that range from Microsoft
Office to sophisticated and costly CASE tools. They also need to document as they develop
systems. It is important that analysts and programmers are capable of understanding the interface
they use. They need to know how to classify, code, store, and write about the data they gather.
Systems developers also need to quickly access a program, enter the required information, and
retrieve it when it is needed again.
Strategies for Improving
Efficiency in Knowledge Work
Implementation Using
Structured Methodologies
Implementation Using
Agile Methodologies
Reduce interface time and errors Adopting organizational standards
for coding, naming, etc.; using forms
Adopting pair
programming
Reduce process learning time and
dual processing losses
Managing when updates are released
so the user does not have to learn and
use software at the same time
Ad hoc prototyping and
rapid development
Reduce time and effort to structure
tasks and format outputs
Using CASE tools and diagrams; using
code written by other programmers
Encouraging short
releases
Reduce nonproductive expansion
of work
Project management; establishing
deadlines
Limiting scope in each
release
Reduce data and knowledge search
and storage time and costs
Using structured data gathering
techniques, such as interviews,
observation, sampling
Allowing for an onsite
customer
Reduce communication and
coordination time and costs
Separating projects into smaller
tasks; establishing barriers
Reduce losses from human
information overload
Applying filtering techniques to
shield analysts and programmers
Timeboxing
Sticking to a 40-hour
workweek
FIGURE 6.10
How Davis and Naumann’s
strategies for improving efficiency
can be implemented using two
different development approaches.
178 PART II • INFORMATION REQUIREMENTS ANALYSIS
Structured approaches encourage adopting standards for everything. Rules set forth include
items such as, “Everyone must use Microsoft Word rather than Word Perfect.” They may be more
detailed instructions to ensure clean data such as, “Always use M for Male and F for Female,”
thereby ensuring that analysts do not unthinkingly choose codes of their own, such as 0 for Male
and 1 for Female. These rules then become part of the data repository. Forms are also useful, re-
quiring all personnel to document their procedures so that another programmer might be able to
take over if necessary.
In an agile approach, forms and procedures work well too, but another element is added. The
additional practice of pair programming assures that one programmer will check the work of an-
other, thereby reducing the number of errors. Pair programming means that ownership of the de-
sign or software itself is shared as in a partnership. Both partners (typically one a programmer,
often a senior one) will say they chose a programming partner who desired to have a quality prod-
uct that is error-free. Since two people work on the same design and code, interface time is not
an issue; it is an integral part of the process. The authors have noted that programmers are quite
emotional when the topic of pair programming is broached.
REDUCING THE PROCESS LEARNING TIME AND DUAL PROCESSING LOSSES. Analysts and
programmers learn specific techniques and software languages required for the completion of a
current project. Inefficiencies often result when some analysts and programmers already know
the products used while others still need to learn them. Typically, we ask that developers learn
these products at the same time they are using them to build the system. This on-the-job training
slows down the entire systems development project considerably.
A traditional, structured project requires more learning. If CASE tools were used, an analyst
may need to learn the proprietary CASE tools used in the organization. The same applies to the
use of a specific computer language. Documentation is also a concern.
Using an agile philosophy, the ability to launch projects without using CASE tools and de-
tailed documentation allows the analysts and programmers to spend most of their time on system
development rather than on learning specific tools.
REDUCING THE TIME AND EFFORT TO STRUCTURE TASKS AND FORMAT OUTPUTS. Whenever a
project is started, a developer needs to determine the boundaries. In other words, the developers
need to know what the deliverable will be and how they will go about organizing the project so
they can complete all the necessary tasks.
A traditional approach would include using CASE tools, drawing diagrams (such as E-R di-
agrams and data flow diagrams), using project management software (such as Microsoft Project),
writing detailed job descriptions, using and reusing forms and templates, and reusing code writ-
ten by other programmers.
Systems development using an agile approach addresses the need to structure tasks by sched-
uling short releases. The agile philosophy suggests that system developers create a series of dead-
lines for many releases of the system. The first releases would possess fewer features, but, with
each new release, additional features would be added.
REDUCING THE NONPRODUCTIVE EXPANSION OF WORK. Parkinson’s law states that “work
expands so as to fill the time available for its completion.” If there are no specified deadlines, it
is possible that knowledge work will continue to expand.
With traditional structured methodologies, deadlines at first seem far into the future. Analysts
may use project management techniques to try to schedule the activities, but there is a built-in
bias to extend earlier tasks longer than they need to be and then try to shorten tasks later on in the
development. Analysts and programmers are less concerned about distant deadlines than ap-
proaching ones.
Once again, the agile approach stresses short releases. Releases can be delivered at the time
promised, minus some of the features originally promised. Making all deadlines imminent pushes
a realistic expectation for (at least partial) completion to the fore.
REDUCING THE DATA AND KNOWLEDGE SEARCH AND STORAGE TIME AND COSTS. System
developers need to gather information about the organization, goals, priorities, and details about
current information systems before they can proceed to develop a new system. Data-gathering
methods include interviewing, administering questionnaires, observation, and investigation by
examining reports and memos.
CHAPTER 6 • AGILE MODELING AND PROTOTYPING 179
Structured methodologies encourage structured data-gathering methods. Structured tech-
niques would normally be used to structure interviews and design the interview process.
Questionnaires would be developed in a structured way, and structured observational tech-
niques such as STROBE would encourage the analyst to specifically observe key elements
and form conclusions based on the observations of the physical environment. A sampling plan
would be determined quantitatively, in order for the systems analyst to select reports and
memos to examine.
Knowledge searches are less structured in an agile modeling environment. The practice of
having an onsite customer greatly enhances access to information. The onsite customer is pres-
ent to answer questions about the organization itself, its goals, the priorities of organizational
members and customers, and whatever knowledge is necessary about existing information sys-
tems. As the project continues, the picture of customer requirements becomes clearer. This ap-
proach seems relatively painless because, when the system developers want to know something,
they can just ask. The downside, however, is that the onsite representative may make up infor-
mation if it is unknown or unavailable or evade telling the truth for some ulterior purpose.
REDUCING COMMUNICATION AND COORDINATION TIME AND COSTS. Communication between
analysts and users, as well as among analysts themselves, is at the heart of developing systems.
Poor communication is certainly the root of multiple development problems. We know that
communication increases when more people join the project. When two people work on a project,
there is one opportunity for a one-to-one conversation; when three people are involved, there are
three possibilities; when four are involved, there are six possibilities, and so on. Inexperienced
team members need time to get up to speed, and they can slow down a project even though they
are meant to help expedite it.
Traditional structured development encourages the separation of big tasks into smaller tasks.
This allows more tightly knit groups and decreases the time spent communicating. Another ap-
proach involves setting up barriers. For example, customers may not be given access to program-
mers. This is a common practice in many industries. However, increased efficiency often means
decreased effectiveness, and it has been noted that dividing up groups and setting up barriers will
often introduce errors.
Agile methods, on the other hand, limit time instead of tasks. Timeboxing is used in agile
methodologies to encourage completion of activities in shorter periods. Timeboxing is simply set-
ting a time limit of one or two weeks to complete a feature or module. The agile method scrum
puts a premium on time, while the developers communicate effectively as a team. Since commu-
nication is one of the four values of the agile philosophy, communication costs tend to increase
rather than decrease.
REDUCING LOSSES FROM HUMAN INFORMATION OVERLOAD. We have long known that people
do not react well in information overload situations. When telephones were an emerging
technology, switchboard operators manually connected calls between two parties. It was
demonstrated that this system would work until an information overload occurred, at which point
the entire system broke down. When too many calls came in, the overwhelmed switchboard
operator would simply stop working and give up completely on connecting callers. An analogous
overload situation can occur anytime to anyone, including systems analysts and programmers.
A traditional approach would be to try to filter information to shield analysts and program-
mers from customer complaints. This approach allows developers to continue working on the
problem without the interference and subjectivity that would normally occur.
Using an agile philosophy, analysts and programmers are expected to stick to a 40-hour
workweek. This might be viewed by some as a questionable practice. How will all the work ever
get done? The agile philosophy states, however, that quality work is usually done during a rou-
tine schedule, and it is only when overtime is added that problems of poor quality design and
programming enter the scene. By sticking to a 40-hour work week schedule, agile methodology
claims you will eventually come out ahead.
Risks Inherent in Organizational Innovation
In consultation with users, analysts must consider the risks that organizations face when adopt-
ing new methodologies. Clearly this is part of a larger question of when is the appropriate time to
upgrade human skills, adopt new organizational processes, and institute internal change.
180 PART II • INFORMATION REQUIREMENTS ANALYSIS
Measuring
Impact
Cost
Risks in
Adopting
Organizational
Innovation
Individual
Rights
Timing
Organizational
Culture
Clients’
Reactions
FIGURE 6.11
Adopting new information
systems involves balancing
several risks.
In the larger sense, these are questions of a strategic dimension for organizational leadership.
Specifically, we consider the case of the systems analysis team adopting agile methods in light of
the risks to the organization and the eventual successful outcome for the systems development
team and their clients. Figure 6.11 shows many of the variables that need to be considered when
assessing the risk of adopting organizational innovation.
ORGANIZATIONAL CULTURE. A key consideration is the overall culture of the organization and
how the culture of the development team fits within it. A conservative organizational culture with
many stable features that does not seek to innovate may be an inappropriate or even inhospitable
context for the adoption of agile methodologies by the systems development group. Analysts and
other developers must use caution in introducing new techniques into this type of setting, since
their success is far from assured, and long-standing development team members or other
organizational members may be threatened by new ways of working that depart from customary,
dependable approaches with proven results.
Conversely, an organization that is dependent on innovation to retain its cutting edge in its
industry might be the organization most welcoming toward agile innovations in systems devel-
opment methods. In this instance, the culture of the organization is already permeated with the
understanding of the critical nature of many of the core principles of agile development method-
ologies. From the strategic level downward, the company’s members have internalized the need
for rapid feedback, dynamic responses to changing environments in real time, dependence on the
customer for guidance and participation in problem solving, and so on.
Located between these extremes are organizations that do not rely on innovation as a key
strategic strength (in other words, they are not dependent on research and development of new
products or services to remain afloat) but that might still wish to adopt innovative practices in
small units or groups. Indeed, such small, innovative centers or kernels might eventually drive
the growth or competitive advantage of this type of organization.
TIMING. Organizations must ask and answer the question of when is the best time to innovate
with the adoption of new systems development methodologies, when all other projects and factors
(internally and externally) are taken into account. Organizations must consider the entire panoply
of projects in which they are investing, look ahead at project deadlines, schedule the upgrading
of physical plants, and absorb key industry and economic forecasts.
CHAPTER 6 • AGILE MODELING AND PROTOTYPING 181
COST. Another risk to the adoption of agile methodologies for organizations is the cost involved in
education and training of systems analysts and programmers in the new approach. This can involve
either costly off-site seminars and courses or hiring consultants to work with current staff onsite.
Further, opportunity costs are involved when systems developers are necessarily diverted (albeit
temporarily) from ongoing projects to learn new skills. Education in itself can be costly, but an
additional burden is recognized when analysts cannot earn income during their training period.
CLIENTS’ REACTIONS. When clients (whether they are internal or external) are involved as users
or initiators of information systems development efforts, reactions to the use of new methods
entailed by the agile approach are also a key consideration. Some clients react with joy once the
benefits of timeliness and involvement are described. Others do not want to be used for systems
“experiments” with uncertain outcomes. The client-analyst relationship must be resilient enough
to absorb and adapt to changes in expected behaviors. For example, the onsite presence of a client
during development is a major commitment that should be thoroughly understood and agreed
upon by those adopting agile methods.
MEASURING IMPACT. Another consideration for organizations adopting agile methodologies is
how to certify and measure that the new methods are going to facilitate successful systems
development. The strengths and weaknesses of traditional structured methods used to develop
information systems are well-known.
While there is ample anecdotal evidence that agile methodologies are superior for develop-
ment under some conditions, their history is short-lived and not yet empirically supported. There-
fore, the adoption of agile methodologies carries with it the risk that systems created with them
will not be successful or will not adequately interface with legacy systems. Measuring the impact
of the use of agile methodologies has begun, but organizations need to be vigilant in proposing
impact measurements in tandem with the adoption of new methods.
THE INDIVIDUAL RIGHTS OF PROGRAMMERS/ANALYSTS. Successful systems developers
(analysts and programmers) exercise creativity in their approach to their work, and they deserve
the right to work in the most fruitful configuration possible. It is possible that the working
requirements of new agile methods (for example, pair programming) encroach upon some basic
rights of creative people to work alone or in groups as the design work dictates. There is no “one
best way” to design a system, module, interface, form, or Web page. In the instance of systems
developers, creativity, subjectivity, and the right to achieve design objectives through numerous
individual paths need to be balanced against the organizational adoption of innovative approaches
such as agile methodologies.
As you can see, adopting organizational innovations poses many risks to the organization as
well as to individuals. We examined risks to the organization as a whole as well as to those posed
to the individual systems analyst who is caught up in the organization’s desire to innovate.
SUMMARY
Prototyping is an information-gathering technique useful for supplementing the traditional SDLC; however,
both agile methods and human–computer interaction share roots in prototyping. When systems analysts use
prototyping, they are seeking user reactions, suggestions, innovations, and revision plans to make improve-
ments to the prototype, and thereby modify system plans with a minimum of expense and disruption. The
four major guidelines for developing a prototype are to (1) work in manageable modules, (2) build the pro-
totype rapidly, (3) modify the prototype, and (4) stress the user interface.
Although prototyping is not always necessary or desirable, it should be noted that there are three main, in-
terrelated advantages to using it: (1) the potential for changing the system early in its development, (2) the op-
portunity to stop development on a system that is not working, and (3) the possibility of developing a system
that more closely addresses users’ needs and expectations. Users have a distinct role to play in the prototyping
process and systems analysts must work systematically to elicit and evaluate users’ reactions to the prototype.
One particular use of prototyping is rapid application development (RAD). It is an object-oriented ap-
proach with three phases: requirements planning, the RAD design workshop, and implementation.
Agile modeling is a software development approach that defines an overall plan quickly, develops and
releases software quickly, and then continuously revises software to add additional features. The values of
the agile approach that are shared by the customer as well as the development team are communication, sim-
plicity, feedback, and courage. Agile activities include coding, testing, listening, and designing. Resources
available include time, cost, quality, and scope.
182 PART II • INFORMATION REQUIREMENTS ANALYSIS
H Y P E R C A S E® E X P E R I E N C E 6
“Thank goodness it’s the time of year when everything is new.
I love spring; it’s the most exhilarating time here at MRE. The trees
are so green, with leaves in so many different shades. So many new
projects to do, too; so many new clients to meet. We have a new in-
tern, too. Anna Mae Silver. Sometimes the newest employee is the
most eager to help. Call on her if you need more answers.”
“All the newness reminds me of prototyping. Or what I know
about prototyping, anyway. It’s something new and fresh, a quick
way to find out what’s happening.
“I believe that we have a few prototypes already started.
Sometimes our new onsite customer, Tessa Silverstone, gets in-
volved by helping create user stories on which to build the proto-
types. But the best thing about prototypes is that they can change. I
don’t know anyone who’s really been satisfied with a first pass at a
prototype. But it’s fun to be involved with something that’s happen-
ing fast, and something that will change.”
HYPERCASE Questions
1. Make a list of the user stories Tessa Silverstone shared as
examples.
2. Locate the prototype currently proposed for use in one of
MRE’s departments. Suggest a few modifications that would
make this prototype even more responsive to the unit’s needs.
3. Using a word processor, construct a nonoperational prototype
for a Training Unit Project Reporting System. Include features
brought up by the user stories you found. Hint: See sample
screens in Chapters 11 and 12 to help you in your design.
FIGURE 6.HC1
One of the many prototype screens found in HyperCase.
Agile core practices distinguish agile methods, including a type of agile method called extreme pro-
gramming (XP), from other systems development processes. The four core practices of the agile approach
are (1) short releases, (2) 40-hour workweek, (3) onsite customer, and (4) pair programming. The agile de-
velopment process includes choosing a task that is directly related to a customer-desired feature based on
user stories, choosing a programming partner, selecting and writing appropriate test cases, writing the code,
running the test cases, debugging it until all test cases run, implementing it with the existing design, and in-
tegrating it into what currently exists.
Later in this chapter we compared how SDLC and agile approaches handle improving knowledge work
efficiency differently. We then discussed several inherent dangers to organizations adopting innovative ap-
proaches, including an incompatible organizational culture, poor timing of the project, cost of training systems
analysts, unfavorable client reactions to new behavioral expectations, difficulties in measuring the impact, and
the possible compromise of the individual creative rights of programmers and analysts.
CHAPTER 6 • AGILE MODELING AND PROTOTYPING 183
KEYWORDS AND PHRASES
40-hour workweek
agile modeling
agile principles
agile values
assume simplicity
embracing change
extreme programming (XP)
first-of-a-series prototype
implementation
incremental change
modifying the prototype
nonoperational prototype
onsite customer
pair programming
patched-up prototype
prototype
RAD design workshop
rapid application development (RAD)
rapid feedback
requirements planning phase
scrum methodology
selected-features prototype
short release
stressing the user interface
user involvement with prototyping
user stories
working in manageable modules
REVIEW QUESTIONS
1. What four kinds of information is the analyst seeking through prototyping?
2. What is meant by the term patched-up prototype?
3. Define a prototype that is a nonworking scale model.
4. Give an example of a prototype that is a first full-scale model.
5. Define what is meant by a prototype that is a model with some, but not all, essential features.
6. List the advantages and disadvantages of using prototyping to replace the traditional SDLC.
7. Describe how prototyping can be used to augment the traditional SDLC.
8. What are the criteria for deciding whether a system should be prototyped?
9. List four guidelines the analyst should observe in developing a prototype.
10. What are the two main problems identified with prototyping?
11. List the three main advantages in using prototyping.
12. How can a prototype mounted on an interactive Web site facilitate the prototyping process? Answer
in a paragraph.
13. What are three ways that a user can be of help in the prototyping process?
14. Define what is meant by RAD.
15. What are the three phases of RAD?
16. What are the four values that must be shared by the development team and business customers when
taking an agile approach?
17. What are agile principles? Give five examples.
18. What are the four core practices of the agile approach?
19. Name the four resource control variables used in the agile approach.
20. Outline the typical steps in an agile development episode.
21. What is a user story? Is it primarily written or spoken? State your choice, then defend your answer
with an example.
22. List software tools that can aid the developer in doing a variety of tests of code.
23. What is scrum?
24. Name the seven strategies for improving efficiency in knowledge work.
25. Identify six risks in adopting organizational innovation.
PROBLEMS
1. As part of a larger systems project, Clone Bank of Clone, Colorado, wants your help in setting up a
new monthly reporting form for its checking and savings account customers. The president and vice
presidents are very attuned to what customers in the community are saying. They think that their
customers want a checking account summary that looks like the one offered by the other three banks
in town. They are unwilling, however, to commit to that form without a formal summary of customer
feedback that supports their decision. Feedback will not be used to change the prototype form in any
way. They want you to send a prototype of one form to one group and to send the old form to another
group.
a. In a paragraph discuss why it probably is not worthwhile to prototype the new form under these
circumstances.
b. In a second paragraph discuss a situation under which it would be advisable to prototype a new
form.
184 PART II • INFORMATION REQUIREMENTS ANALYSIS
2. C. N. Itall has been a systems analyst for Tun-L-Vision Corporation for many years. When you came
on board as part of the systems analysis team and suggested prototyping as part of the SDLC for a
current project, C. N. said, “Sure, but you can’t pay any attention to what users say. They have no
idea what they want. I’ll prototype, but I’m not ‘observing’ any users.”
a. As tactfully as possible, so as not to upset C. N. Itall, make a list of the reasons that support the
importance of observing user reactions, suggestions, and innovations in the prototyping process.
b. In a paragraph, describe what might happen if part of a system is prototyped and no user
feedback about it is incorporated into the successive system.
3. “Every time I think I’ve captured user information requirements, they’ve already changed. It’s like
trying to hit a moving target. Half the time, I don’t think they even know what they want
themselves,” exclaims Flo Chart, a systems analyst for 2 Good 2 Be True, a company that surveys
product use for the marketing divisions of several manufacturing companies.
a. In a paragraph, explain to Flo Chart how prototyping can help her to better define users’
information requirements.
b. In a paragraph, comment on Flo’s observation: “Half the time, I don’t think they even know what
they want themselves.” Be sure to explain how prototyping can actually help users better
understand and articulate their own information requirements.
c. Suggest how an interactive Web site featuring a prototype might address Flo’s concerns about
capturing user information requirements. Use a paragraph.
4. Harold, a district manager for the multioutlet chain of Sprocket’s Gifts, thinks that building a
prototype can mean only one thing: a nonworking scale model. He also believes that this way is
too cumbersome to prototype information systems and thus is reluctant to do so.
a. Briefly (in two or three paragraphs) compare and contrast the other three kinds of prototyping
that are possible so that Harold has an understanding of what prototyping can mean.
b. Harold has an option of implementing one system, trying it, and then having it installed in five
other Sprocket locations if it is successful. Name a type of prototyping that would fit well with
this approach, and in a paragraph defend your choice.
5. “I’ve got the idea of the century!” proclaims Bea Kwicke, a new systems analyst with your systems
group. “Let’s skip all this SDLC garbage and just prototype everything. Our projects will go a lot
more quickly, we’ll save time and money, and all the users will feel as if we’re paying attention to
them instead of going away for months on end and not talking to them.”
a. List the reasons you (as a member of the same team as Bea) would give Bea to dissuade her from
trying to scrap the SDLC and prototype every project.
b. Bea is pretty disappointed with what you have said. To encourage her, use a paragraph to explain
the situations you think would lend themselves to prototyping.
6. The following remark was overheard at a meeting between managers and a systems analysis team at
the Fence-Me-In fencing company: “You told us the prototype would be finished three weeks ago.
We’re still waiting for it!”
a. In a paragraph, comment on the importance of rapid delivery of a portion of a prototyped
information system.
b. List three elements of the prototyping process that must be controlled to ensure prompt delivery
of the prototype.
c. What are some elements of the prototyping process that are difficult to manage? List them.
7. Prepare a list of activities for a systems development team for an online travel agent that is setting up
a Web site for customers. Now suppose you are running out of time. Describe some of your options.
Describe what you will trade off to get the Web site released in time.
8. Given the situation for Williwonk’s chocolates (Problem 1 in Chapter 3), which of the four agile
modeling resource variables may be adjusted?
9. Examine the collection of user stories from the online merchant shown earlier in the chapter. The
online media store would now like to have you add some features to its Web site. Following the
format shown earlier in this chapter in Figure 6.9, write a user story for the features listed below:
a. Include pop-up ads.
b. Offer to share the details of the customer’s purchases with his or her friends.
c. Extend offer to purchase other items.
10. Go to the Palm gear Web site at www.palmgear.com. Explore the Web site and write up a dozen brief
user stories for improving the Web site.
11. Go to the iTunes Web site and write up a dozen brief user stories for improving the Web site.
12. Using the stories you wrote for Problem 9, walk through the five stages of the agile development
process and describe what happens at each one of the stages.
www.palmgear.com
CHAPTER 6 • AGILE MODELING AND PROTOTYPING 185
GROUP PROJECTS
1. Divide your group into two smaller subgroups. Have group 1 follow the processes specified in this
chapter for creating prototypes. Using a CASE tool or a word processor, group 1 should devise two
nonworking prototype screens using the information collected in the interviews with Maverick
Transport employees accomplished in the group exercise in Chapter 4. Make any assumptions
necessary to create two screens for truck dispatchers. Group 2 (playing the roles of dispatchers)
should react to the prototype screens and provide feedback about desired additions and deletions.
2. The members of group 1 should revise the prototype screens based on the user comments they
received. Those in group 2 should respond with comments about how well their initial concerns were
addressed with the refined prototypes.
3. As a united group, write a paragraph discussing your experiences with prototyping for ascertaining
information requirements.
4. Within your group, assign some of the roles that people take on in agile development. Make sure that
one person is an onsite customer and at least two people are programmers. Assign other roles, as you
see fit. Simulate the systems development situation discussed in Problem 7, or have the person acting
as the onsite customer choose an ecommerce business with which he or she is familiar. Assume that
the customer wants to add some functionality to his or her Web site. Role-play a scenario showing
what each person would do if this was being approached through agile methods. Write a paragraph
that discusses the constraints that each person faces in enacting his or her role.
SELECTED BIBLIOGRAPHY
Alavi, M. “An Assessment of the Prototyping Approach to Information Systems Development.”
Communications of the ACM, Vol. 27, No. 6, June 1984, pp. 556–563.
Avison, D., and D. N. Wilson. “Controls for Effective Prototyping.” Journal of Management Systems, Vol. 3,
No. 1, 1991.
Beck, K. Extreme Programming Explained: Embrace Change. Boston: Addison-Wesley Publishing Co.,
2000.
Beck, K., and M. Fowler. Planning Extreme Programming. Boston: Addison-Wesley Publishing Co., 2001.
Cockburn, A. Agile Software Development. Boston: Addison-Wesley Publishing Co., 2002.
Davis, G. B., and J. D. Naumann. “Knowledge Work Productivity.” In Emerging Information Technologies:
Improving Decisions, Cooperation, and Infrastructure. Edited by K. E. Kendall, pp. 343–357. Thou-
sand Oaks, CA: Sage, 1999. 42.
Davis, G. B., and M. H. Olson. Management Information Systems: Conceptual Foundations, Structure, and
Development, 2d ed. New York: McGraw-Hill, 1985.
Fitzgerald, B., and G. Hartnett. “A Study of the Use of Agile Methods Within Intel,” In Business Agility &
IT Diffusion. Edited by L. Matthiassen, J. Pries-Heje, and J. DeGross, pp. 187–202. Proc Conference,
Atlanta, May 2005. New York: Springer, 2005.
Ghione, J. “A Web Developer’s Guide to Rapid Application Development Tools and Techniques.” Netscape
World, June 1997.
Gremillion, L. L., and P. Pyburn. “Breaking the Systems Development Bottleneck.” Harvard Business Re-
view, March–April 1983, pp. 130–137.
Harrison, T. S. “Techniques and Issues in Rapid Prototyping.” Journal of Systems Management. Vol. 36,
No. 6, June 1985, pp. 8–13.
Kendall, J. E., and K. E. Kendall. “Agile Methodologies and the Lone Systems Analyst: When Individual
Creativity and Organizational Goals Collide in the Global IT Environment.” Journal of Individual Em-
ployment Rights, Vol. 11, No. 4, 2004–2005, pp. 333–347.
Kendall, J. E., K. E. Kendall, and S. Kong. “Improving Quality Through the Use of Agile Methods in Sys-
tems Development: People and Values in the Quest for Quality.” In Measuring Information Systems
Delivery Quality. Edited by E. W. Duggan and H. Reichgelt, pp. 201–222. Hershey, PA: Idea Group
Publishing, 2006.
Liang, D. Rapid Java Application Development Using JBuilder 3. Upper Saddle River, NJ: Prentice Hall,
2000.
McBreen, P. Questioning Extreme Programming. Boston: Addison-Wesley Publishing Co., 2003.
Naumann, J. D., andA. M. Jenkins. “Prototyping: The New Paradigm for Systems Development.” MIS Quar-
terly, September 1982, pp. 29–44.
186 PART II • INFORMATION REQUIREMENTS ANALYSIS
E P I S O D E 6
CPU CASE
ALLEN SCHMIDT, JULIE E. KENDALL, AND KENNETH E. KENDALL
Reaction Time
“We need to get a feel for some of the output needed by the users,” Anna comments. “It will help to firm up
some of our ideas on the information they require.”
“Agreed,” replies Chip. “It will also help us determine the necessary input. From that we can design
corresponding data entry screens. Let’s create prototype reports and screens and get some user feedback.
Why don’t we use Microsoft Access to quickly create screens and reports? I’m quite familiar with the soft-
ware. Let’s start by writing some agile stories to summarize what is needed and then develop some proto-
types. We can also use the user requirements, and should create a prototype for each ‘communicates’ line
connecting an actor and a use case.”
Anna smiles and remarks, “I’ve already written the following agile stories for the preventive mainte-
nance problem.” They are:
1. There is no way to know when to perform preventive maintenance on desktop computers.
2. Normally we go from room to room.
3. When a room is completed, we write it on a list.
Anna starts by developing the PREVENTIVE MAINTENANCE REPORT prototype. Based on agile
stories, she sets to work creating the prototype of the report she feels Mike Crowe will need.
“This report should be used to predict when machines should have preventive maintenance,” Anna
thinks. “It seems to me that Mike would need to know which machine needs work performed as well as when
the work should be scheduled. Now let’s see, what information would identify the machine clearly? The in-
ventory number, brand name, and model would identify the machine. I imagine the room and campus should
be included to quickly locate the machine. A calculated maintenance date would tell Mike when the work
should be completed. What sequence should the report be in? Probably the most useful would be by location.”
The PREVENTIVE MAINTENANCE REPORT prototype showing the completed report is shown in
Figure E6.1. Notice that Xxxxxxx’s and generic dates are used to indicate where data should be printed. Re-
alistic campus and room locations as well as inventory numbers are included. They are necessary for Mi-
crosoft Access to accomplish group printing.
The report prototype is soon finished. After printing the final copy, Anna takes the report to both Mike
Crowe and Dot Matricks. Mike Crowe is enthusiastic about the project and wants to know when the report
will be in production. Dot is similarly impressed.
Several changes come up. Mike wants an area to write in the completion date of the preventive main-
tenance so the report can be used to reenter the dates into the computer. She also suggests that the report ti-
tle be changed to WEEKLY PREVENTIVE MAINTENANCE REPORT. The next steps are to modify the
prototype report to reflect the recommended changes and then have both Mike and Dot review the result.
The report is easily modified and printed. Dot is pleased with the final result. “This is really a fine
method for designing the system,” she comments. “It’s so nice to feel that we are a part of the development
process and that our opinions count. I’m starting to feel quite confident that the final system will be just what
we’ve always wanted.”
Mike has similar praise, observing, “This will make our work so much smoother. It eliminates the
guesswork about which machines need to be maintained. And sequencing them by room is a fine idea. We
won’t have to spend so much time returning to rooms to work on machines.”
Chip makes a note about each of these modifications on a Prototype Evaluation Form (like Figure 6.3
in the chapter). This form gets Chip organized and documents the prototyping process.
Chip and Anna next turn their attention to creating screen prototypes. “Because I like the hardware as-
pect of the system, why don’t I start working on the ADD NEW COMPUTER screen design?” asks Chip.
“Sounds good to me,” Anna replies. “I’ll focus on the software aspects.”
Chip analyzes the results of detailed interviews with Dot and Mike. He compiles a list of elements that
each user would need when adding a computer. Other elements, such as location and maintenance informa-
tion, would update the COMPUTER MASTER later, after the machine was installed.
“Having the database tables defined sure helps to make quick prototypes,” Chip comments. “It didn’t
take very long to complete the screen. Would you like to watch me test the prototype?”
“Sure,” replies Anna. “This is my favorite part of prototyping.”
CHAPTER 6 • AGILE MODELING AND PROTOTYPING 187
Preventive Maintenance Report
Week of 6/1/10
6/1/10
Page 1 of 1Campus Room Inventory Brand Name Model Last Preventive Done
Location Location Number
Maintenance DateCentral Administration 11111 84004782 Xxxxxxxxxxxxxxxx Xxxxxxxxxxxxxxxxxxxx 4/4/10 ____ Central Administration 11111 90875039 Xxxxxxxxxxxxxx Xxxxxxxxxxxxxxxx 3/24/10 ____ Central Administration 11111 93955411 Xxxxxxxxxxxxxxxx Xxxxxxxxxxxxxxxxxxxx 4/4/10 ____ Central Administration 11111 99381373 Xxxxxxxxxxxxxxxx Xxxxxxxxxxxxxxxxxxxx 3/24/10 ____Central Administration 22222 10220129 Xxxxxxxxxxxxxx Xxxxxxxxxxxxxxxxxx 3/24/10 ____Central Administration 99999 22838234 Xxxxxxxxxxxxxx Xxxxxxxxxxxxxxxx 3/24/10 ____ Central Administration 99999 24720952 Xxxxxxxxxxxxxx Xxxxxxxxxxxxxxxxxx 3/24/10 ____ Central Administration 99999 33453403 Xxxxxxxxxxxxxxxx Xxxxxxxxxxxxxxxx 4/4/10 ____Central Administration 99999 34044449 Xxxxxxxxxxxx Xxxxxxxxxxxxxxxxxx 4/4/10 ____ Central Administration 99999 40030303 Xxxxxxxxxxxxxxxx Xxxxxxxxxxxxxxxxxxxx 4/4/10 ____Central Administration 99999 47403948 Xxxxxxxxxxxxxxxx Xxxxxxxxxxxxxxxx 3/24/10 ____Central Administration 99999 56620548 Xxxxxxxxxxxxxxxx Xxxxxxxxxxxxxxxx 4/4/10 ____Central Computer Science 22222 34589349 Xxxxxxxxxxxx Xxxxxxxxxxxxxxxxxx 3/24/10 ____Central Computer Science 22222 38376910 Xxxxxxxxxxxx Xxxxxxxxxxxxxxxxxx 3/24/10 ____Central Computer Science 22222 94842282 Xxxxxxxxxxxxxxxx Xxxxxxxxxxxxxxxxxxxx 3/24/10 ____Central Computer Science 99999 339393 Xxxxxxxxxxxxxx Xxxxxxxxxxxxxxxx 4/4/10 ____Central Zoology 22222 11398423 Xxxxxxxxxxxxxxxx Xxxxxxxxxxxxxxxxxxxx 3/24/10 ____ Central Zoology 22222 28387465 Xxxxxxxxxxxxxxxx Xxxxxxxxxxxxxxxxxxxx 4/4/10 ____Central Zoology 99999 70722533 Xxxxxxxxxxxxxx Xxxxxxxxxxxxxxxx 3/24/10 ____Central Zoology 99999 99481102 Xxxxxxxxxxxxxxxx Xxxxxxxxxxxxxxxxxxxx 3/24/10 ____
FIGURE E6.1
Prototype for PREVENTIVE
MAINTENANCE REPORT. This
report needs to be revised.
Chip executes the screen design as Anna, Mike, and Dot watch. The drop-down lists and check boxes
make it easy to enter accurate data.
“I really like this,” Dot says. “May I try adding some data?”
“Be my guest,” replies Chip. “Try to add both invalid and valid data. And notice the help messages that
appear at the bottom of the screen to indicate what should be entered. Why don’t you try out this prototype
for a day or two and get back to me? Then I’ll make the changes that you recommend and have you review
the revised prototype.”
Anna returns to her desk and creates the ADD SOFTWARE RECORD screen design.
When Anna completes the screen design, she asks Cher to test the prototype. Cher keys information in,
checks the drop-down list values, and views help messages.
“I really like the design of this screen and how it looks,” remarks Cher. “It lacks some of the fields
that would normally be included when a software package is entered, though, like the computer type that
the software runs on, the memory required, and the processor speed. I would also like buttons to save the
record and exit.”
“Those are all doable. I’ll make the changes and get back to you,” replies Anna, making some notes to
herself.
A short time later, Cher again tests the ADD SOFTWARE RECORD screen. It includes all the features
that she requires. The completed screen design may be viewed using Microsoft Access. Notice that there is
a line separating the software information from the hardware entries.
A few days later Dot visits Anna with suggested changes for the ADD NEW COMPUTER prototype.
“I reviewed this with Mike and we like what we have seen, but we have some suggestions,” remarks Dot.
“One of the things that is missing is the operating system. We have a number of technical people that have
multiple operating systems. Many of the Mac users have Windows installed on their Macs, and some of the
188 PART II • INFORMATION REQUIREMENTS ANALYSIS
Windows users have Linux-type operating systems installed. We need to include multiple operating systems
on the ADD NEW COMPUTER screen.”
“This will take some time to update the tables and prototypes,” comments Chip after a lengthy pause.
“But this is why we use short cycles to develop, test, and get feedback. I’ll modify the prototype and get
back to you.”
After some thought and reworking of database tables, the prototype is modified and sent to Mike for
approval. After a few days, Mike stops in with some feedback. “This looks great!” exclaims Mike. “How-
ever, I realized that there are some additional requirements that I forgot to tell you about. We have a refresh
program that replaces computers after an interval of time. The time period varies by type of machine and
when it was purchased. When we purchase the machine, we estimate the refresh interval. Can we have the
refresh interval added to the database and the prototype? We could use it to calculate the refresh date, and
periodically scan the Computer Master for all computers that need to be refreshed.”
Chip starts working on the modifications. “This agile development is interesting,” he says, grinning at
Anna. “I can see why it’s used to discover the requirements.”
The final version of the ADD NEW COMPUTER prototype screen created with Access is shown in
Figure E6.2. Placed on the top of the screen are the current date and time as well as a centered screen title.
Field captions are placed on the screen, with the characters left aligned. Check boxes are included for the
warranty field, as well as a drop-down list for the type of optical drive. An operating system subform is in-
cluded to select multiple operating systems in the lower right portion of the screen. “Add Record” and
“Print” buttons are included.
“Chip, I was speaking with Dot and she mentioned that there has been funding for putting some of the
information on the Web, as part of the Web site for technology support at CPU,” comments Anna, looking
up from her computer. “I have been busy creating a prototype for the Web page menus and the first screen,
one to report technology problems. Because solving problems is Mike’s area, I have invited him and Dot to
review the prototype. Care to join the session?”
“Sure,” replies Chip. “I am interested in working on the design of some of the Web pages.”
A short time later Mike, Dot, and Chip are gathered around Anna as she demonstrates the Web page, il-
lustrated in Figure E6.3.
“I really like the menu style,” comments Dot. “The main menu features drop-down submenus on the
top that are easy to use, and I like the way they drop down and the menu items change color when the mouse
moves over them.”
“Yes, and having submenus drop down below the main one for the features of each choice makes it
easy to find what you are looking for,” adds Mike. “I do have some suggestions for the Web page for re-
porting problems, though. It would be more useful if the Problem Category selection area were moved to
the top of the page. Each problem type is assigned to a different technician, one who is more or less an ex-
pert in that area. We need an additional check box to identify if it is a Macintosh or a Windows machine or
software we are working with. The Tag Number help is a great idea. Many people do not realize that each
piece of equipment has a small metal identifying tag on it with a unique inventory number. Hmmm. . . . That
large blue area seems to stand out too much. After all, it is just help. I think that it would be better to replace
it with a small graphic image.”
FIGURE E6.2
Prototype for the ADD NEW
COMPUTER screen. Microsoft
Access was used as the
prototyping tool. Improvements
can be made at this stage.
CHAPTER 6 • AGILE MODELING AND PROTOTYPING 189
FIGURE E6.3
Prototype for the PROBLEM
REPORTING SYSTEM Web
page. This Web page needs some
improvement.
“I think that these changes will be easy to do,” remarks Anna.
“Great,” replies Mike. “It would also be useful to include the tech support hotline phone number on the
Web page. If it’s a real emergency, it might speed up our resolution to the problem. We should add an entry
field for their phone number as well. Of course, we could always look it up, but the person reporting the
problem may be in a computer lab or another location away from his office.”
“Good idea!” exclaims Dot. “This is going to be extremely helpful to the faculty and staff. I think that
we should prototype all the Web pages for the site. I realize that Web pages are supposed to change from
time to time, but let’s get these as good as possible from the start! Why don’t you look these over and give
us feedback in a few days?”
Anna glances at Chip and grins. “I guess you’ll be working on Web page design sooner than you think!”
A few days later Mike stops back with additional feedback on the Web design. “This Web page looks
good,” grins Mike, “But it got me thinking. We have an image of all the software on each lab computer.
When there is a problem, such as a virus or bad hard drive, we fix it and re-image the machine. However
each lab has different requirements for the software that should be on the machine. Additionally, we ask the
faculty if the image needs updating. This usually happens at the end of the spring semester and we work on
it over the summer. Can you whip up a couple of Web page prototypes for us to review? One should have a
list of all the software, including browsers, virus detection, and other standard packages, that are included
for each machine in a given room. Another Web page would be used for faculty to update the image list.”
“Whew, that’s a tall order,” replies Anna with a thoughtful look. “We’ll work on it.”
Anna and Chip continued to work on prototypes by designing, obtaining user feedback, and modifying
the design to accommodate user changes. Now that the work is complete, they have a solid sense of the re-
quirements of the system.
“This is becoming a large project,” comments Anna as she looks at the large amount of prototypes
that have been assembled. “I don’t think that we can develop all this software in the allotted amount of
time.”
“I agree with you—you seem to have a good sense about this,” replies Chip thoughtfully. “We only
have six months of development time to complete the project, including the Web pages. There’s a lot of
server code and JavaScript to write.”
Anna puts down a stack of prototype evaluation forms and looks directly at Chip. “What are our
options?”
Chip takes a moment to reflect and replies, “Well, compromising quality is not an option, and the due
date is inflexible. That leaves cost and scope as trade-offs.”
“Cost is somewhat fixed,” replies Anna. “Dot and Paige have said in no uncertain terms that there are
so many software development projects that we have to stay within our budget.”
“Well, that means that we will have to reduce the scope of the project,” says Chip after a moment. “We
will work on the high priority items first.”
“What about sacrificing a 40 hour workweek?” chides Anna.
“Not an option,” grins Chip. “After all, it’s a core value!”
190 PART II • INFORMATION REQUIREMENTS ANALYSIS
EXERCISES
Critique the report and screen prototypes for the exercises below (E-1 through E-10). Record the changes
on a copy of the Prototype Evaluation Form. Use Microsoft Access to view the prototypes, then modify the
report and screen prototypes with the suggested changes. Print the final prototypes.
Use the following guidelines to help in your analysis:
1. Alignment of fields on reports. Are the fields aligned correctly? Are report column headers
aligned correctly over the columns? If the report has captions to the left of data fields, are they aligned
correctly (usually on the left)? Are the data aligned correctly within each entry field?
2. Report content. Does the report contain all the necessary data? Are appropriate and useful totals
and subtotals present? Are there extra totals or data that should not be on the report? Are codes or the
meaning of the codes printed on the report (codes should be avoided because they may not clearly pres-
ent the user with information)?
3. Check the visual appearance of the report. Does it look pleasing? Are repeating fields group
printed (that is, the data should print only once, at the beginning of the group)? Are there enough blank
lines between groups to easily identify them?
4. Screen data and caption alignment. Are the captions correctly aligned on the screens? Are the
data fields correctly aligned? Are the data within a field correctly aligned?
5. Screen visual appearance. Does the screen have a pleasing appearance? Is there enough vertical
spacing between fields? Is there enough horizontal spacing between columns? Are the fields logically
grouped together? Are features, such as buttons and check boxes, grouped together?
6. Does the screen contain all the necessary functional elements? Look for missing buttons
that would help the user work smoothly with the screen; also look for missing data, extra unnecessary
data, or fields that should be replaced with a check box or drop-down list.
E-1. The HARDWARE INVENTORY LISTING shows all personal computers, sorted by campus and
room.
E-2. The SOFTWARE INVESTMENT REPORT is used to calculate the total amount invested in software.
E-3. The INSTALLED COMPUTER REPORT shows the information for installed machines.
E-4. The prototype for the COMPUTER PROBLEM REPORT lists all machines sorted by the total cost
of repairs and includes the number of repairs (some machines do not have a high cost, because they
are still under warranty). This prototype is used to calculate the total cost of repairs for the entire uni-
versity, as well as to identify the problem machines.
E-5. The NEW SOFTWARE INSTALLED REPORT shows the number of machines with each software
package that are installed in each room of each campus.
E-6. The SOFTWARE CROSS-REFERENCE REPORT lists all locations for each version of each soft-
ware package.
E-7. The DELETE COMPUTER RECORD screen is used to select computers to remove from the system.
The entry area is the Hardware Inventory Number field. The other fields are for display only, to iden-
tify the machine. The users would like the ability to print each record before they delete it. They also
want to scroll to the next and previous records. Hint: Examine the fields shown in the HARDWARE
INVENTORY LISTING report.
E-8. An UPDATE MAINTENANCE INFORMATION screen enables Mike Crowe to change mainte-
nance information about personal computers. Sometimes these are routine changes, such as the
LAST PREVENTIVE MAINTENANCE DATE or the NUMBER OF REPAIRS, but other changes
may occur only sporadically, such as the expiration of a warranty. The HARDWARE INVENTORY
NUMBER is entered, and the matching COMPUTER RECORD is found. The BRAND and
MODEL are displayed for feedback. The operator may then change the WARRANTY, MAINTE-
NANCE INTERVAL, NUMBER OF REPAIRS, LAST PREVENTIVE MAINTENANCE DATE,
and TOTAL COST OF REPAIRS fields. Mike would like to print the screen information, as well
as undo any changes, easily.
E-9. The SOFTWARE LOCATION INQUIRY displays information about rooms and machines contain-
ing selected software. The TITLE, VERSION NUMBER, and OPERATING SYSTEM are entered.
The output portion of the screen should show the CAMPUS LOCATION, ROOM LOCATION,
HARDWARE INVENTORY NUMBER, BRAND NAME, and MODEL. Buttons allow the user to
move to the next record, the previous record, and to close and exit the screen.
CHAPTER 6 • AGILE MODELING AND PROTOTYPING 191
FIGURE E6.4
Prototype for the UPDATE LAB
IMAGE Web page. This Web page
needs some improvement.
E-10. The UPDATE LAB IMAGE Web page prototype is shown in Figure E6.4. Review this Web page and
suggest changes.
The exercises preceded by a Web-icon indicate value-added material is available from the Web site at
www.pearsonhighered.com/kendall. Students can download a sample Visible Analyst Project and a Microsoft Access
database that can be used to complete the exercises.
www.pearsonhighered.com/kendall
This page intentionally left blank
193
C H A P T E R 7
Using Data Flow Diagrams
LEARNING OBJECTIVES
Once you have mastered the material in this chapter you will be able to:
1. Comprehend the importance of using logical and physical data flow diagrams (DFDs) to
graphically depict data movement for humans and systems in an organization.
2. Create, use, and explode logical DFDs to capture and analyze the current system through
parent and child levels.
3. Develop and explode logical DFDs that illustrate the proposed system.
4. Produce physical DFDs based on logical DFDs you have developed.
5. Understand and apply the concept of partitioning of physical DFDs.
The systems analyst needs to make use of the conceptual freedom afforded
by data flow diagrams, which graphically characterize data processes and
flows in a business system. In their original state, data flow diagrams de-
pict the broadest possible overview of system inputs, processes, and out-
puts, which correspond to those of the general systems model discussed in
Chapter 2. A series of layered data flow diagrams may be used to represent and analyze de-
tailed procedures in the larger system.
THE DATA FLOW APPROACH TO HUMAN
REQUIREMENTS DETERMINATION
When systems analysts attempt to understand the information requirements of users, they must
be able to conceptualize how data move through the organization, the processes or transforma-
tion that the data undergo, and what the outputs are. Although interviews and the investigation of
hard data provide a verbal narrative of the system, a visual depiction can crystallize this informa-
tion for users and analysts in a useful way.
Through a structured analysis technique called data flow diagrams (DFDs), the systems an-
alyst can put together a graphical representation of data processes throughout the organization.
By using combinations of only four symbols, the systems analyst can create a pictorial depiction
of processes that will eventually provide solid system documentation.
Advantages of the Data Flow Approach
The data flow approach has four chief advantages over narrative explanations of the way data
move through the system:
1. Freedom from committing to the technical implementation of the system too early.
2. Further understanding of the interrelatedness of systems and subsystems.
3. Communicating current system knowledge to users through data flow diagrams.
4. Analysis of a proposed system to determine if the necessary data and processes have been
defined.
PA R T I I I
The Analysis Process
194 PART III • THE ANALYSIS PROCESS
Entity
Symbol Meaning Example
Process
New Student
Information
Data Flow
Data Store
D3 Student Master
Student
2.1
Create
Student
Record
FIGURE 7.1
The four basic symbols used in
data flow diagrams, their
meanings, and examples.
Perhaps the biggest advantage lies in the conceptual freedom found in the use of the four
symbols (covered in the upcoming subsection on DFD conventions). (You will recognize three of
the symbols from Chapter 2.) None of the symbols specifies the physical aspects of implementa-
tion. DFDs emphasize the processing of data or the transforming of data as they move through a
variety of processes. In logical DFDs, there is no distinction between manual or automated
processes. Neither are the processes graphically depicted in chronological order. Rather,
processes are eventually grouped together if further analysis dictates that it makes sense to do so.
Manual processes are put together, and automated processes can also be paired with each other.
This concept, called partitioning, is taken up in a later section.
Conventions Used in Data Flow Diagrams
Four basic symbols are used to chart data movement on data flow diagrams: a double square, an
arrow, a rectangle with rounded corners, and an open-ended rectangle (closed on the left side and
open ended on the right), as shown in Figure 7.1. An entire system and numerous subsystems can
be depicted graphically with these four symbols in combination.
The double square is used to depict an external entity (another department, a business, a
person, or a machine) that can send data to or receive data from the system. The external en-
tity, or just entity, is also called a source or destination of data, and it is considered to be ex-
ternal to the system being described. Each entity is labeled with an appropriate name.
Although it interacts with the system, it is considered as outside the boundaries of the system.
Entities should be named with a noun. The same entity may be used more than once on a given
data flow diagram to avoid crossing data flow lines.
The arrow shows movement of data from one point to another, with the head of the arrow
pointing toward the data’s destination. Data flows occurring simultaneously can be depicted do-
ing just that through the use of parallel arrows. Because an arrow represents data about a person,
place, or thing, it too should be described with a noun.
A rectangle with rounded corners is used to show the occurrence of a transforming process.
Processes always denote a change in or transformation of data; hence, the data flow leaving a
process is always labeled differently than the one entering it. Processes represent work being
CHAPTER 7 • USING DATA FLOW DIAGRAMS 195
performed in the system and should be named using one of the following formats. A clear name
makes it easier to understand what the process is accomplishing.
1. When naming a high-level process, assign the process the name of the whole system. An
example is INVENTORY CONTROL SYSTEM.
2. When naming a major subsystem, use a name such as INVENTORY REPORTING
SUBSYSTEM or INTERNET CUSTOMER FULFILLMENT SYSTEM.
3. When naming detailed processes, use a verb-adjective-noun combination. The verb
describes the type of activity, such as COMPUTE, VERIFY, PREPARE, PRINT, or ADD.
The noun indicates what the major outcome of the process is, such as REPORT or
RECORD. The adjective illustrates which specific output, such as BACKORDERED or
INVENTORY, is produced. Examples of complete process names are COMPUTE SALES
TAX, VERIFY CUSTOMER ACCOUNT STATUS, PREPARE SHIPPING INVOICE,
PRINT BACK-ORDERED REPORT, SEND CUSTOMER EMAIL CONFIRMATION,
VERIFY CREDIT CARD BALANCE, and ADD INVENTORY RECORD.
A process must also be given a unique identifying number indicating its level in the diagram. This
organization is discussed later in this chapter. Several data flows may go into and out of each
process. Examine processes with only a single flow in and out for missing data flows.
The last basic symbol used in data flow diagrams is an open-ended rectangle, which repre-
sents a data store. The rectangle is drawn with two parallel lines that are closed by a short line on
the left side and are open ended on the right. These symbols are drawn only wide enough to al-
low identifying lettering between the parallel lines. In logical data flow diagrams, the type of
physical storage is not specified. At this point the data store symbol is simply showing a deposi-
tory for data that allows examination, addition, and retrieval of data.
The data store may represent a manual store, such as a filing cabinet, or a computerized file or
database. Because data stores represent a person, place, or thing, they are named with a noun. Tem-
porary data stores, such as scratch paper or a temporary computer file, are not included on the data
flow diagram. Give each data store a unique reference number, such as D1, D2, D3, and so on.
DEVELOPING DATA FLOW DIAGRAMS
Data flow diagrams can and should be drawn systematically. Figure 7.2 summarizes the steps in-
volved in successfully completing data flow diagrams. First, the systems analyst needs to concep-
tualize data flows from a top-down perspective.
To begin a data flow diagram, collapse the organization’s system narrative (or story) into a
list with the four categories of external entity, data flow, process, and data store. This list in turn
helps determine the boundaries of the system you will be describing. Once a basic list of data el-
ements has been compiled, begin drawing a context diagram.
Here are a few basic rules to follow:
1. The data flow diagram must have at least one process, and must not have any freestanding
objects or objects connected to themselves.
2. A process must receive at least one data flow coming into the process and create at least
one data flow leaving from the process.
3. A data store should be connected to at least one process.
4. External entities should not be connected to each other. Although they communicate
independently, that communication is not part of the system we design using DFDs.
Creating the Context Diagram
With a top-down approach to diagramming data movement, the diagrams move from general to
specific. Although the first diagram helps the systems analyst grasp basic data movement, its gen-
eral nature limits its usefulness. The initial context diagram should be an overview, one includ-
ing basic inputs, the general system, and outputs. This diagram will be the most general one, really
a bird’s-eye view of data movement in the system and the broadest possible conceptualization of
the system.
The context diagram is the highest level in a data flow diagram and contains only one process,
representing the entire system. The process is given the number zero. All external entities are shown
196 PART III • THE ANALYSIS PROCESS
1. Make a list of business activities and use it to determine various
• External entities
• Data flows
• Processes
• Data stores
2. Create a context diagram that shows external entities and data
flows to and from the system. Do not show any detailed processes
or data stores.
3. Draw Diagram 0, the next level. Show processes, but keep them
general. Show data stores at this level.
4. Create a child diagram for each of the processes in Diagram 0.5. Check for errors and make sure the labels you assign to each
process and data flow are meaningful.
6. Develop a physical data flow diagram from the logical data flow
diagram. Distinguish between manual and automated processes,
describe actual files and reports by name, and add controls to
indicate when processes are complete or errors occur.7. Partition the physical data flow diagram by separating or grouping
parts of the diagram in order to facilitate programming and
implementation.
Developing Data Flow DiagramsUsing a Top-Down Approach
FIGURE 7.2
Steps in developing data flow
diagrams.
on the context diagram, as well as major data flow to and from them. The diagram does not contain
any data stores and is fairly simple to create, once the external entities and the data flow to and from
them are known to analysts.
Drawing Diagram 0 (The Next Level)
More detail than the context diagram permits is achievable by “exploding the diagrams.” Inputs
and outputs specified in the first diagram remain constant in all subsequent diagrams. The rest of
the original diagram, however, is exploded into close-ups involving three to nine processes and
showing data stores and new lower-level data flows. The effect is that of taking a magnifying
glass to view the original data flow diagram. Each exploded diagram should use only a single
sheet of paper. By exploding DFDs into subprocesses, the systems analyst begins to fill in the de-
tails about data movement. The handling of exceptions is ignored for the first two or three levels
of data flow diagramming.
Diagram 0 is the explosion of the context diagram and may include up to nine processes.
Including more processes at this level will result in a cluttered diagram that is difficult to un-
derstand. Each process is numbered with an integer, generally starting from the upper left-hand
corner of the diagram and working toward the lower right-hand corner. The major data stores
of the system (representing master files) and all external entities are included on Diagram 0.
Figure 7.3 schematically illustrates both the context diagram and Diagram 0.
Because a data flow diagram is two-dimensional (rather than linear), you may start at any
point and work forward or backward through the diagram. If you are unsure of what you would
include at any point, take a different external entity, process, or data store, and then start drawing
the flow from it. You may:
CHAPTER 7 • USING DATA FLOW DIAGRAMS 197
Data Flow C
Input B
Input A
Output C
Input A Data Flow B Output C
Record A Record E
Record A Record E
Input B Data Flow D
General
Process
BBB
General
Process
AAA
General
Process
CCC
General
Process
DDD
Entity
3
Entity
3
Entity
1
Entity
2
Entity
1
Entity
2
0
1 2
3 4
System
Name
Data Store 1D1 Data Store 2D2
FIGURE 7.3
Context diagrams (above) can be
“exploded” into Diagram 0
(below). Note the greater detail in
Diagram 0.
1. Start with the data flow from an entity on the input side. Ask questions such as: “What
happens to the data entering the system?” “Is it stored?” “Is it input for several
processes?”
2. Work backward from an output data flow. Examine the output fields on a document or
screen. (This approach is easier if prototypes have been created.) For each field on the
output, ask: “Where does it come from?” or “Is it calculated or stored on a file?” For
example, when the output is a PAYCHECK, the EMPLOYEE NAME and ADDRESS
would be located on an EMPLOYEE file, the HOURS WORKED would be on a TIME
RECORD, and the GROSS PAY and DEDUCTIONS would be calculated. Each file and
record would be connected to the process that produces the paycheck.
3. Examine the data flow to or from a data store. Ask: “What processes put data into the
store?” or “What processes use the data?” Note that a data store used in the system you are
working on may be produced by a different system. Thus, from your vantage point, there
may not be any data flow into the data store.
4. Analyze a well-defined process. Look at what input data the process needs and what output
it produces. Then connect the input and output to the appropriate data stores and entities.
5. Take note of any fuzzy areas where you are unsure of what should be included or what
input or output is required. Awareness of problem areas will help you formulate a list of
questions for follow-up interviews with key users.
198 PART III • THE ANALYSIS PROCESS
Creating Child Diagrams (More Detailed Levels)
Each process on Diagram 0 may in turn be exploded to create a more detailed child diagram. The
process on Diagram 0 that is exploded is called the parent process, and the diagram that results
is called the child diagram. The primary rule for creating child diagrams, vertical balancing, dic-
tates that a child diagram cannot produce output or receive input that the parent process does not
also produce or receive. All data flow into or out of the parent process must be shown flowing
into or out of the child diagram.
The child diagram is given the same number as its parent process in Diagram 0. For exam-
ple, process 3 would explode to Diagram 3. The processes on the child diagram are numbered us-
ing the parent process number, a decimal point, and a unique number for each child process. On
Diagram 3, the processes would be numbered 3.1, 3.2, 3.3, and so on. This convention allows the
analyst to trace a series of processes through many levels of explosion. If Diagram 0 depicts
processes 1, 2, and 3, the child diagrams 1, 2, and 3 are all on the same level.
Entities are usually not shown on the child diagrams below Diagram 0. Data flow that
matches the parent flow is called an interface data flow and is shown as an arrow from or into a
blank area of the child diagram. If the parent process has data flow connecting to a data store,
the child diagram may include the data store as well. In addition, this lower-level diagram may
contain data stores not shown on the parent process. For example, a file containing a table of in-
formation, such as a tax table, or a file linking two processes on the child diagram may be in-
cluded. Minor data flow, such as an error line, may be included on a child diagram but not on the
parent.
Processes may or may not be exploded, depending on their level of complexity. When a
process is not exploded, it is said to be functionally primitive and is called a primitive process.
Logic is written to describe these processes and is discussed in detail in Chapter 9. Figure 7.4 il-
lustrates detailed levels in a child data flow diagram.
Checking the Diagrams for Errors
Several common errors made when drawing data flow diagrams are as follows:
1. Forgetting to include a data flow or pointing an arrow in the wrong direction. An example
is a drawn process showing all its data flow as either input or output. Each process
transforms data and must receive input and produce output. This type of error usually
occurs when the analyst has forgotten to include a data flow or has placed an arrow
pointing in the wrong direction. Process 1 in Figure 7.5 contains only input because the
GROSS PAY arrow is pointing in the wrong direction. This error also affects process 2,
CALCULATE WITHHOLDING AMOUNT, which is in addition missing a data flow
representing input for the withholding rates and the number of dependents.
2. Connecting data stores and external entities directly to each other. Data stores and entities
may not be connected to each other; data stores and external entities must connect only
with a process. A file does not interface with another file without the help of a program or a
person moving the data, so EMPLOYEE MASTER cannot directly produce the CHECK
RECONCILIATION file. External entities do not directly work with files. For example,
you would not want a customer rummaging around in the customer master file. Thus, the
EMPLOYEE does not create the EMPLOYEE TIME FILE. Two external entities directly
connected indicate that they wish to communicate with each other. This connection is not
included on the data flow diagram unless the system is facilitating the communication.
Producing a report is an instance of this sort of communication. A process must still be
interposed between the entities to produce the report, however.
3. Incorrectly labeling processes or data flow. Inspect the data flow diagram to ensure that
each object or data flow is properly labeled. A process should indicate the system name or
use the verb-adjective-noun format. Each data flow should be described with a noun.
4. Including more than nine processes on a data flow diagram. Having too many processes
creates a cluttered diagram that is confusing to read and hinders rather than enhances
communication. If more than nine processes are involved in a system, group some of the
processes that work together into a subsystem and place them in a child diagram.
CHAPTER 7 • USING DATA FLOW DIAGRAMS 199
Data Flow D
Record A
Input BEntity
2
3
Data Flow D
Detailed
Process
YYY
Detailed
Process
XXX
Detailed
Process
ZZZ
4
Input B
3.1
Transaction
Record 1
D5 Transaction
File 1
Transaction
Record 1
Error
3.2
Detailed
Data Flow Z
3.3
Record A
Data flow from
parent process to
child diagram must
match.
Matching data flow.
Error lines may be
added on a detailed
child diagram.
Transaction files
may be added to
lower-level diagrams.
Output flow must
match the parent
process.
General
Process
CCC
General
Process
DDD
D1 Data Store 1
D1 Data Store 1
FIGURE 7.4
Differences between the parent
diagram (above) and the child
diagram (below).
5. Omitting data flow. Examine your diagram for linear flow, that is, data flow in which each
process has only one input and one output. Except in the case of very detailed child data
flow diagrams, linear data flow is somewhat rare. Its presence usually indicates that the
diagram has missing data flow. For instance, the process CALCULATE WITHHOLDING
AMOUNT needs the number of dependents that an employee has and the
WITHHOLDING RATES as input. In addition, NET PAY cannot be calculated solely from
the WITHHOLDING, and the EMPLOYEE PAYCHECK cannot be created from the NET
PAY alone; it also needs to include an EMPLOYEE NAME, as well as the current and
year-to-date payroll and WITHHOLDING AMOUNT figures.
6. Creating unbalanced decomposition (or explosion) in child diagrams. Each child diagram
should have the same input and output data flow as the parent process. An exception to this
rule is minor output, such as error lines, which are included only on the child diagram. The
200 PART III • THE ANALYSIS PROCESS
Net
Pay
Employee
D2 Employee
Time File
Employee
Time Record
D1 Employee
Master
Hours
Worked
Gross Pay Withholding
Employee
Paycheck
Employee
Record
Employee
Record
D1 Employee
Master
Check
Reconciliation
Record
D3
Check
Reconciliation Employee
An external entity
should not directly
connect to a data
store.
A data store should
not directly connect
to another data
store.
Calculate
Gross
Pay
Calculate
Withholding
Amount
Calculate
Net Pay
Print
Employee
Paycheck
1 2 3
4
Process 1 has
no output.
Process 2 has no
input. The Gross
Pay data flow is
going in the wrong
direction.
FIGURE 7.5
Typical errors that can occur in a
data flow diagram (payroll
example).
data flow diagram in Figure 7.6 is correctly drawn. Note that although the data flow is not
linear, you can clearly follow a path directly from the source entity to the destination entity.
LOGICAL AND PHYSICAL DATA FLOW DIAGRAMS
Data flow diagrams are categorized as either logical or physical. A logical data flow diagram fo-
cuses on the business and how the business operates. It is not concerned with how the system will
be constructed. Instead, it describes the business events that take place and the data required and
produced by each event. Conversely, a physical data flow diagram shows how the system will be
implemented, including the hardware, software, files, and people involved in the system. The
chart shown in Figure 7.7 contrasts the features of logical and physical models. Notice that the
logical model reflects the business, whereas the physical model depicts the system.
Ideally, systems are developed by analyzing the current system (the current logical DFD) and
then adding features that the new system should include (the proposed logical DFD). Finally, the
best methods for implementing the new system should be developed (the physical DFD). This
progression is shown in Figure 7.8.
Developing a logical data flow diagram for the current system affords a clear understanding
of how the current system operates, and thus a good starting point for developing the logical
model of the current system. This time-consuming step is often omitted so as to go straight to the
proposed logical DFD.
One argument in favor of taking the time to construct the logical data flow diagram of the
current system is that it can be used to create the logical data flow diagram of the new system.
CHAPTER 7 • USING DATA FLOW DIAGRAMS 201
Employee
D2 Employee
Time File
Employee
Time Record
D1 Employee
Master
Hours
Worked
Gross Pay
Employee
Record
D1 Employee
Master
Check
Reconciliation
Record
Employee
Employee
Time Record
Number of
Dependents
D4 Withholding
Tables
Withholding
Rates
D3 Check
Reconciliation
Net
Pay
Withholding
Amount
Withholding
Amount
Gross Pay
Gross Pay
Employee
Record
Employee
Paycheck
Paycheck Information
Create
Employee
Time
Record
1
Create
Check
Reconciliation
File
6
Calculate
Gross
Pay
2
Calculate
Withholding
Amount
3
Calculate
Net
Pay
4
Print
Employee
Check
5
FIGURE 7.6
The correct data flow diagram for
the payroll example.Processes that will be unnecessary in the new system may be dropped, and new features, activi-
ties, output, input, and stored data may be added. This approach provides a means of ensuring that
the essential features of the old system are retained in the new system. In addition, using the log-
ical model for the current system as a basis for the proposed system provides for a gradual tran-
sition to the design of the new system. After the logical model for the new system has been
developed, it may be used to create a physical data flow diagram for the new system.
Figure 7.9 shows a logical data flow diagram and a physical data flow diagram for a grocery
store cashier. The CUSTOMER brings the ITEMS to the register; PRICES for all ITEMS are
LOOKED UP and then totaled; next, PAYMENT is given to the cashier; finally, the CUSTOMER
is given a RECEIPT. The logical data flow diagram illustrates the processes involved without go-
ing into detail about the physical implementation of activities. The physical data flow diagram
shows that a bar code—the universal product code (UPC) BAR CODE found on most grocery
store items—is used. In addition, the physical data flow diagram mentions manual processes such
202 PART III • THE ANALYSIS PROCESS
Design Feature Logical Physical
What the model
depicts
Collections of data
regardless of how
the data are stored.
Show data stores
representing
permanent data
collections.
How the system will be implemented (or
how the current system operates).
How the business
operates.
System controls
Type of data stores
Show business
controls.
Show controls for validating input data, for
obtaining a record (record found status),
for ensuring successful completion of a
process, and for system security (example:
journal records).
Master files, transition files. Any processes
that operate at two different times must
be connected by a data store.
Physical files and databases, manual
files.
What the data stores
represent
What the processes
represent
Business activities. Programs, program modules, and
manual procedures.
FIGURE 7.7
Features common to both logical
and physical data flow diagrams.
New Logical
Data Flow Diagram
New Physical
Data Flow Diagram
Current Logical
Data Flow Diagram
Derive the logical data flow
diagram for the current
system by examining the
physical data flow diagram
and isolating unique
business activities.
Create the logical data flow
diagram for the new system
by adding the input, output,
and processes required in
the new system to the logical
data flow diagram for the
current system.
Derive the physical data
flow diagram by examining
processes on the new
logical diagram. Determine
where the user interfaces
should exist, the nature of
the processes, and
necessary data stores.
FIGURE 7.8
The progression of models from
logical to physical.
as scanning, explains that a temporary file is used to keep a subtotal of items, and indicates that
the PAYMENT could be made by CASH, CHECK, or DEBIT CARD. Finally, it refers to the re-
ceipt by its name, CASH REGISTER RECEIPT.
Developing Logical Data Flow Diagrams
To develop such a diagram, first construct a logical data flow diagram for the current system.
There are a number of advantages to using a logical model, including:
1. Better communication with users.
2. More stable systems.
3. Better understanding of the business by analysts.
4. Flexibility and maintenance.
5. Elimination of redundancies and easier creation of the physical model.
CHAPTER 7 • USING DATA FLOW DIAGRAMS 203
Items and Prices
Customer
Identify
Item
1
D1 Prices
Items to
Purchase
Prices
Look Up
Prices
2
Item ID Amount to Be PaidCompute
Total
Cost of
Order
3
Receipt
Settle
Transaction
and Issue
Receipt
4
Customer
Payment
Logical Data Flow Diagram
Item Codes and Prices
Customer
Pass
Items Over
Scanner
(Manual)
1
D1 UPC Price File Temporary
Trans. File
Items Brought
to Checkout
Item Description
and Prices
Look Up
Code and
Price
in File
2
UPC Bar Code
Calculated
Amount to Be PaidCompute
Total
Cost
3
Cash Register
Receipt
Collect Money
and Give
Receipt
(Manual)
4
Customer
Cash, Check,
or Debit Card
Physical Data Flow Diagram
UPC Code
D2
Items, Prices,
and Subtotals
Items and
Prices
FIGURE 7.9
The physical data flow diagram
(below) shows certain details not
found on the logical data flow
diagram (above).
A logical model is easier to use when communicating with users of the system because it is cen-
tered on business activities. Users will thus be familiar with the essential activities and many of
the human information requirements of each activity.
Systems formed using a logical data flow diagram are often more stable because they are
based on business events and not on a particular technology or method of implementation. Log-
ical data flow diagrams represent features of a system that would exist no matter what the phys-
ical means of doing business are. For example, activities such as applying for a video store
membership card, checking out a DVD, and returning the DVD, would all occur whether the store
had an automated, manual, or hybrid system.
Developing Physical Data Flow Diagrams
After you develop the logical model of the new system, you may use it to create a physical data
flow diagram. The physical data flow diagram shows how the system will be constructed, and
usually contains most, if not all, of the elements found in Figure 7.10. Just as logical data flow
diagrams have certain advantages, physical data flow diagrams have others, including:
1. Clarifying which processes are performed by humans (manual) and which are automated.
2. Describing processes in more detail than logical DFDs.
3. Sequencing processes that have to be done in a particular order.
4. Identifying temporary data stores.
5. Specifying actual names of files, database tables, and printouts.
6. Adding controls to ensure the processes are done properly.
204 PART III • THE ANALYSIS PROCESS
Contents of Physical Data Flow Diagrams
• Manual processes
• Processes for adding, deleting, changing, and updating
records
• Data entry and verifying processes
• Validation processes for ensuring accurate data input
• Sequencing processes to rearrange the order of records
• Processes to produce every unique system output
• Intermediate data stores
• Actual file names used to store data
• Controls to signify completion of tasks or error conditions
FIGURE 7.10
Physical data flow diagrams
contain many items not found in
logical data flow diagrams.
Activity Customer Item Order Order Detail
Customer Logon R
Item Inquiry R
Item Selection R C C
Order Checkout U U U R
Add Account C
Add Item C
Close Customer Account D
Remove Obsolete Item D
Change Customer Demographics RU
Change Customer Order RU RU RU CRUD
Order Inquiry R R R R
FIGURE 7.11
A CRUD matrix for an Internet
storefront. This tool can be used to
represent where each of four
processes (Create, Read, Update,
and Delete) occurs within a
system.
Physical data flow diagrams are often more complex than logical data flow diagrams simply be-
cause of the many data stores present in a system. The acronym CRUD is often used for Create,
Read, Update, and Delete, the activities that must be present in a system for each master file. A
CRUD matrix is a tool to represent where each of these processes occurs in a system. Figure 7.11
is a CRUD matrix for an Internet storefront. Notice that some of the processes include more than
one activity. Data entry processes such as keying and verifying are also part of physical data flow
diagrams.
Physical data flow diagrams also have intermediate data stores, often a transaction file or a
temporary database table. Intermediate data stores often consist of transaction files used to store
data between processes. Because most processes that require access to a given set of data are un-
likely to execute at the same instant in time, transaction files must hold the data from one process
to the next. An easily understood example of this concept is found in the everyday experiences of
grocery shopping, meal preparation, and eating. The activities are:
1. Selecting items from shelves.
2. Checking out and paying the bill.
3. Transporting the groceries home.
4. Preparing a meal.
5. Eating the meal.
CHAPTER 7 • USING DATA FLOW DIAGRAMS 205
Each of these five activities would be represented by a separate process on a physical data flow
diagram, and each one occurs at a different time. For example, you would not typically transport
the groceries home and eat them at the same time. Therefore, a “transaction data store” is required
to link each task. When you are selecting items, the transaction data store is the shopping cart. Af-
ter the next process (checking out), the cart is unnecessary. The transaction data store linking
checking out and transporting the groceries home is the shopping bag (cheaper than letting you
take the cart home!). Bags are an inefficient way of storing the groceries once they are home, so
cupboards and a refrigerator are used as a transaction data store between the activity of transport-
ing the goods home and preparing the meal. Finally, a plate, bowl, and cup constitute the link be-
tween preparing and eating the meal.
Timing information may also be included. For example, a physical DFD may indicate that
an edit program must be run before an update program. Updates must be performed before pro-
ducing a summary report, or an order must be entered on a Web site before the amount charged
to a credit card may be verified with the financial institution. Note that because of such consid-
erations, a physical data flow diagram may appear more linear than a logical model.
Create the physical data flow diagram for a system by analyzing its output and input. When
creating a physical data flow diagram, input data flow from an external entity is sometimes called
a trigger because it starts the activities of a process, and output data flow to an external entity is
sometimes called a response because it is sent as the result of some activity. Determine which data
fields or elements need to be keyed. These fields are called base elements and must be stored in
a file. Elements that are not keyed but are rather the result of a calculation or logical operation are
called derived elements.
Sometimes it is not clear how many processes to place in one diagram and when to create a
child diagram. One suggestion is to examine each process and count the number of data flows en-
tering and leaving it. If the total is greater than four, the process is a good candidate for a child
diagram. Physical data flow diagrams are illustrated later in this chapter.
EVENT MODELING AND DATA FLOW DIAGRAMS. A practical approach to creating physical data
flow diagrams is to create a simple data flow diagram fragment for each unique system event.
Events cause the system to do something and act as a trigger to the system. Triggers start activities
and processes, which in turn use data or produce output. An example of an event is a customer
reserving a flight on the Web. As each Web form is submitted, processes are activated, such as
validating and storing the data and formatting and displaying the next Web page.
Events are usually summarized in an event response table. An example of an event response
table for an Internet storefront business is illustrated in Figure 7.12. A data flow diagram frag-
ment is represented by a row in the table. Each DFD fragment is a single process on a data flow
diagram. All the fragments are then combined to form Diagram 0. The trigger and response
columns become the input and output data flows, and the activity becomes the process. The ana-
lyst must determine the data stores required for the process by examining the input and output
data flows. Figure 7.13 illustrates a portion of the data flow diagram for the first three rows of the
event response table.
The advantage of building data flow diagrams based on events is that the users are familiar
with the events that take place in their business area and know how the events drive other activities.
USE CASES AND DATA FLOW DIAGRAMS. In Chapter 2, we introduced the concept of a use case.
We use this notion of a use case in creating data flow diagrams. A use case summarizes an event
and has a similar format to process specifications (described in Chapter 9). Each use case defines
one activity and its trigger, input, and output. Figure 7.14 illustrates a use case for Process 3, Add
Customer Item.
This approach allows the analyst to work with users to understand the nature of the
processes and activities and then create a single data flow diagram fragment. When creating
use cases, first make an initial attempt to define the use cases without going into detail. This
step provides an overview of the system and leads to the creation of Diagram 0. Decide what
the names should be and provide a brief description of the activity. List the activities, inputs,
and outputs for each one.
Make sure you document the steps used in each use case. These should be in the form of busi-
ness rules that list or explain the human and system activities completed for each use case. If at all
206 PART III • THE ANALYSIS PROCESS
Event Activity Response DestinationSource Trigger
Customer
logs on
Customer
browses items
at Web
storefront
Customer
places item into
shopping
basket at Web
storefront
Customer
checks out
Obtain
customer
payment
Send customer
email
Temporal, hourly CustomerSend customer an
email confirming
shipment.
Customer Credit card
information
Verify credit card
amount with credit
card company.
Send.
Credit card data
Customer
feedback
Credit card
company
Customer
Customer Clicks “Check Out”
button on Web page
Display Customer
Order Web page.
Verification Web
page
Store data on Order
Detail Record.
Calculate shipping
cost using shipping
tables.
Update customer total.
Update item quantity
on hand.
Item purchase (item
number and
quantity)
Items
Purchased Web
page
Customer number
and password
Item information
Welcome Web
page
CustomerFind customer record
and verify password.
Send Welcome Web
page.
Find item price and
quantity available.
Send Item Response
Web page.
Item Response
Web page
Customer
Customer Customer
Customer Customer
FIGURE 7.12
An event response table for an
Internet storefront.
possible, list them in the sequence that they would normally be executed. Next, determine the data
used by each step. This step is easier if a data dictionary has been completed. Finally, ask the users
to review and suggest modifications of the use cases. It is important that the use cases are written
clearly. (See Chapter 10 for a further discussion of UML, use cases, and use case diagrams.)
Partitioning Data Flow Diagrams
Partitioning is the process of examining a data flow diagram and determining how it should be
divided into collections of manual procedures and collections of computer programs. Analyze
each process to determine whether it should be a manual or automated procedure. Group auto-
mated procedures into a series of computer programs. A dashed line is often drawn around a
process or group of processes that should be placed into a single computer program.
There are six reasons for partitioning data flow diagrams:
1. Different user groups. Are the processes performed by several different user groups, often
at different physical locations in the company? If so, they should be partitioned into
different computer programs. An example is the need to process customer returns and
customer payments in a department store. Both processes involve obtaining financial
information that is used to adjust customer accounts (subtracting from the amount the
customer owes), but they are performed by different people at different locations. Each
group needs a different screen for recording the particulars of the transaction, either a
credit screen or a payment screen.
2. Timing. Examine the timing of the processes. If two processes execute at different times,
they cannot be grouped into one program. Timing issues may also involve how much data
is presented at one time on a Web page. If an ecommerce site has rather lengthy Web pages
for ordering items or making an airline reservation, the Web pages may be partitioned into
separate programs that format and present the data.
CHAPTER 7 • USING DATA FLOW DIAGRAMS 207
1
Get
Customer
Signin
Customer
Customer Number
and Password
Customer MasterD1
Welcome Web Page
Customer Record
2
Browse
Item
Records
Customer
Item Information
Item MasterD2Item Response
Web Page
Item Record
3
Add
Customer
Item
Customer
Item Purchased
Shipping TablesD8
Item MasterD2
Order DetailD7
Customer MasterD1
Items Purchased
Web Page
Item Record
Shipping Rates
Order Detail
Customer Record
FIGURE 7.13
Data flow diagrams for the first
three rows of the Internet
storefront event response table.
3. Similar tasks. If two processes perform similar tasks, they may be grouped into one
computer program.
4. Efficiency. Several processes may be combined into one program for efficient processing.
For example, if a series of reports needs to use the same large input files, producing them
together may save considerable computer run time.
5. Consistency of data. Processes may be combined into one program for consistency of data.
For example, a credit card company may take a “snapshot” and produce a variety of reports
at the same time just so figures are consistent.
6. Security. Processes may be partitioned into different programs for security reasons. A
dashed line may be placed around Web pages that are on a secure server to separate them
from those Web pages on a server that is not secured. A Web page that is used for obtaining
the user’s identification and password is usually partitioned from order entry or other
business pages.
A DATA FLOW DIAGRAM EXAMPLE
The following example is intended to illustrate the development of a data flow diagram by se-
lectively looking at each of the components explored earlier in this chapter. This example, called
“World’s Trend Catalog Division,” will also be used to illustrate concepts covered in Chapters 8
and 9.
Developing the List of Business Activities
A list of business activities for World’s Trend can be found in Figure 7.15. You could develop this
list using information obtained through interacting with people in interviews, through investiga-
tion, and through observation. The list can be used to identify external entities such as CUS-
TOMER, ACCOUNTING, and WAREHOUSE as well as data flows such as ACCOUNTS
208 PART III • THE ANALYSIS PROCESS
1. Find Item Record using the Item Number. If the item is not found, place a
message on the Items Purchased Web page.2. Store item data on Order Detail Record.
3. Use the Customer Number to find the Customer Record. 4. Calculate Shipping Cost using shipping tables. Using the Item Weight from
the Item Record and the Zip Code from the Customer Record, look up the
Shipping Cost in the Shipping Tables.
5. Modify the Customer Total using the Quantity Purchased and the Item
Price. Add the Shipping Cost. Update the Customer Record.6. Modify the Item Quantity on Hand and update the Item Record.
Steps Performed
Information for Steps
Input Name
Trigger type: External Temporal
Trigger: Customer places an order item in the shopping basket.
Description: Adds an item for a customer Internet order.
Use case name: Add Customer Item
Process ID: 3
Output Name
Source
Destination
Item Purchased(Item Number andQuantity)
Items PurchasedConfirmation
Web Page
Customer
Customer
Item Number, ItemRecord
Customer Number,Customer Record
Order Detail Record
Zip Code, Item Weight,Shipping Table
Quantity Ordered, ItemRecord
Item Record, QuantityPurchased, ShippingCost, Customer Record
FIGURE 7.14
A use case form for the Internet
storefront describes the Add
Customer Item activity and its
triggers, input, and output.
RECEIVABLE REPORT and CUSTOMER BILLING STATEMENT. Later (when developing
level 0 and child diagrams), the list can be used to define processes, data flows, and data stores.
Creating a Context-level Data Flow Diagram
Once this list of activities is developed, create a context-level data flow diagram as shown in
Figure 7.16. This diagram shows the ORDER PROCESSING SYSTEM in the middle (no
processes are described in detail in the context-level diagram) and five external entities (the two
CHAPTER 7 • USING DATA FLOW DIAGRAMS 209
World’s Trend is a mail order supplier of high-quality, fashionable clothing. Customers place
orders by telephone, by mailing an order form included with each catalog, or via the
Web site.
Summary of Business Activities
1. When customer orders come in, the item master and the customer master files are both
updated. If an item is out of stock, the inventory control department is notified.
If the order is from a new customer, a new record is created in the customer master file.
Picking slips are produced for the customer order and sent to the warehouse.
A shipping statement is prepared.
The process of shipping a customer order involves getting the goods from the warehouse
and matching up the customer shipping statement, getting the correct customer address,
and shipping it all to the customer.
The customer statement is generated and a billing statement is sent to a customer once
a month.
An accounts receivable report is sent to the accounting department.
2.
3.
4.
5.
6.
7.
1000 International LaneCornwall, CT 06050
World’s Trend
FIGURE 7.15
A summary of business activities
for World’s Trend Catalog
Division.
Order
Processing
System
0
Back-Ordered Item
Customer Order
New Customer Information
Item Number of Description
y
Shipped Order
Customer Billing Statement
Item Information
Accounts Receivable Report
Order Picking List
Order Goods
Customer
Inventory
Control
Department
Customer
Accounting
Department
Warehouse
FIGURE 7.16
A context-level data flow diagram
for the order processing system at
World’s Trend.
210 PART III • THE ANALYSIS PROCESS
separate entities both called CUSTOMER are really one and the same). The data flows that come
from and go to the external entities are shown as well (for example, CUSTOMER ORDER and
ORDER PICKING LIST).
Drawing Diagram 0
Next, go back to the activity list and make a new list of as many processes and data stores as you
can find. You can add more later, but start making the list now. If you think you have enough infor-
mation, draw a level 0 diagram such as the one found in Figure 7.17. Call this Diagram 0 and keep
Add
Customer
Order
1
D2 Item
Master
Item
Record
Customer Order
y
Back-Ordered Item
Add
Customer
Record
2
New
Customer
Information
Customer
Record
Customer
Record
Produce
Accounts
Receivable
7
Accounts
Receivable
Report
Create
Customer
Statement
6
Prepare
Shipping
Statement
4
Pending
Order
Customer
Shipping
Statement
Produce
Picking
Slips
3
Ship
Customer
Order
5
Customer Name
and Address
Customer
Record
Customer
Record
Pending
Order
Pending
Order
Pending
Order
Pending
Order Order Picking List
Fulfillment Items
Shipped Order
Customer Billing Statement
Warehouse
Customer
Customer
Inventory
Control
Department
D1 Customer
Master
Accounting
Department
8
Item
Information
Item
Number or
Description
D1
Customer
Master
Query Item
Information
Customer
FIGURE 7.17
Diagram 0, of the order processing
system for World’s Trend Catalog
Division.
CHAPTER 7 • USING DATA FLOW DIAGRAMS 211
the processes general so as not to overcomplicate the diagram. Later, you can add detail. When you
are finished drawing the seven processes, draw data flows between them and to the external entities
(the same external entities shown in the context-level diagram). If you think there need to be data
stores such as ITEM MASTER or CUSTOMER MASTER, draw those in and connect them to
processes using data flows. Now take the time to number the processes and data stores. Pay partic-
ular attention to making the labels meaningful. Check for errors and correct them before moving on.
Creating a Child Diagram
At this point try to draw a child diagram (sometimes also called a level 1 diagram) such as the
one in Figure 7.18. Child diagram processes are more detailed, illustrating the logic required to
produce the output. Number your child diagrams Diagram 1, Diagram 2, and so on, in accordance
with the number you assigned to each process in the level 0 diagram.
When you draw a child diagram, make a list of subprocesses first. Aprocess such as ADD CUS-
TOMER ORDER can have subprocesses (in this case, there are seven). Connect these subprocesses
Customer Record
Validate
Customer
Account
1.1
Customer Not
Found Error
Customer
Order
D1
Customer
Master
Customer
Record
Valid Customer Information
Valid Customer Information
Update
Customer
Record
1.6
Create
Pending
Order
1.7
Pending
Order
Customer
Order
Order
Totals
Order
Totals
Calculate
Order
Totals
1.5
Item Price
and Weight
D4
Shipping and
Handling Table
D2 Item
Master
Shipping Costs
Determine
Quantity
Available
1.3
Back-Ordered
Item
Validate
Order
Item
1.2
Item Not
Found Error
Customer
Order Valid Item
Item Quantity on Hand
Available Item
Available
Item
Available
Item
Update
Item
Quantity
1.4
Item
Record
D2 Item
Master
FIGURE 7.18
Diagram 1, of the order processing
system for World’s Trend Catalog
Division.
212 PART III • THE ANALYSIS PROCESS
to one another and also to data stores when appropriate. Subprocesses do not have to be connected
to external entities, because we can always refer to the parent (or level 0) data flow diagram to iden-
tify these entities. Label the subprocesses 1.1, 1.2, 1.3, and so on. Take the time to check for errors
and make sure the labels make sense.
Creating a Physical Data Flow Diagram from the Logical DFD
If you want to go beyond the logical model and draw a physical model as well, look at Figure 7.19,
which is an example of a physical data flow child diagram of process 3, PRODUCE PICKING
SLIPS. Physical DFDs give you the opportunity to identify processes for scanning bar codes, dis-
Read
Item
Record
3.1
Item Bin and
Section Location
Order Item
Information
D2 Item Master
File
Order Record Create
Order
Item
Record
3.2
Order Item
Record
Order Item
Record
D6 Order Item
File
Get
Customer
Record
3.4
Customer
Record
Customer Number
D1 Customer
Master File
Customer Name,
Address, and
Telephone
Format
Customer
Lines
3.5
Customer Line
Sorted
Order
Item
Record
Format
Item
Lines
3.6
Order Item LinePrint
Order
Picking
Slip
3.7
Order
Picking
Slip
Sorted
Order Item
Record
D7 Sorted Order
Item File
Sort Order
Item by
Location
within
Warehouse
3.3
FIGURE 7.19
A physical data flow child
diagram for World’s Trend
Catalog Division.
CHAPTER 7 • USING DATA FLOW DIAGRAMS 213
playing screens, locating records, and creating and updating files. The sequence of activities is im-
portant in physical DFDs, because the emphasis is on how the system will work and in what order
events happen.
When you label a physical model, take care to describe the process in great detail. For exam-
ple, subprocess 3.3 in a logical model could simply be SORT ORDER ITEM, but in the physical
model, a better label is SORT ORDER ITEM BY LOCATION WITHIN CUSTOMER. When you
write a label for a data store, refer to the actual file or database, such as CUSTOMER MASTER
FILE or SORTED ORDER ITEM FILE. When you describe data flows, describe the actual form,
report, or screen. For example, when you print a slip for order picking, call the data flow ORDER
PICKING SLIP.
Partitioning the Physical DFD
Finally, take the physical data flow diagram and suggest partitioning through combining or sep-
arating the processes. As stated earlier, there are many reasons for partitioning: identifying dis-
tinct processes for different user groups, separating processes that need to be performed at
different times, grouping similar tasks, grouping processes for efficiency, combining processes
for consistency, or separating them for security. Figure 7.20 shows that partitioning is useful in
the case of World’s Trend Catalog Division. You would first group processes 1 and 2 because it
would make sense to add new customers at the same time their first order was placed. You would
then put processes 3 and 4 in two separate partitions because these must be done at different times
from each other and thus cannot be grouped into a single program.
The process of developing a data flow diagram is now completed from the top down, first
drawing a companion physical data flow diagram to accompany the logical data flow diagram,
then partitioning the data flow diagram by grouping or separating the processes. The World’s
Trend example is used again in Chapters 8 and 9.
PARTITIONING WEB SITES
Partitioning is a very useful principle when designing a Web site. Web site designers who use
forms to collect data may find it more appropriate to divide a Web site into a series of Web pages,
which will improve the way humans use the site, the speed of processing, and the ease of main-
taining the site. Each time data must be obtained from a data store or an external partner, a Web
site designer might consider creating a unique Web form and DFD process to validate and process
the data.
The Web developer may also use Ajax, sending a request to the server and obtaining a small
amount of data or an XML document returned to the same page. Ajax may be used to avoid cre-
ating too many small pages containing only a few extra or changed Web form elements. How-
ever, the analyst should create several pages when needed. One consideration is when a large
amount of data needs to be obtained from the server, such as a list of all the flights that match
starting and destination airports for specific travel days. When accessing different database tables
on the same database, the data may be obtained containing fields from different database tables
and passed to one process. However, if different databases are involved, the analyst may decide
to use separate Web pages. When user input is required, the analyst may either use separate Web
pages or use Ajax to facilitate a change in a drop-down list or to change a small amount of data.
A good example of partitioning can be seen in the development of a Web-based travel book-
ing site. To simplify, we will only look at the airline booking portion of the Web site, shown in
the data flow diagram in Figure 7.21. Notice that the Web designer has chosen to create several
processes and unique partitions in making a flight reservation. Process 1 receives and validates
the dates and airports entered by the customer (or travel agent acting for a customer). The selec-
tion data is used to obtain flight details and create a transaction data store of flight details that
match the flight request.
It is advisable to partition the process of finding the flight information as a separate process,
because a data store must be searched and the flight details are used to display a series of succes-
sive Web pages with matching flights. Then, once a customer chooses a flight, the information
must be sent to a selected airline. It is important to have the FLIGHT DETAILS transaction file
available to display each Web page of new flights, because redoing the search may take a lengthy
amount of time that is unacceptable to a human user trying to complete a transaction.
214 PART III • THE ANALYSIS PROCESS
The selection of available flights (process 2) uses an internal database, but this database does
not have information about availability of seats, because the airlines are receiving reservations
from many travel service organizations. This means that there must be a separate process and
small program partitioned for determining if seats are available and for reserving specific seats.
Because there is a lot of user input, forms are designed to handle all the user requests. Hav-
ing separate forms means that the forms are less complex, and therefore users will find them more
attractive and easier to fill out. This design meets both the usability and usefulness criteria impor-
tant when designing Web sites for human–computer interaction. It also means that processing will
take place more quickly, because once the flight is chosen, the next step involving the choice of
seats should not require the customer to input or even see the flight details again at this time. Most
airline Web sites now use pop-up windows in which customers point to their seat selection.
Add
Customer
Order
1
Customer
D1 Customer
Master File
Customer
Record
Customer
Order
D3 Order File
D2
Item Master
File
Item
Record
Inventory
Control
Department
Add
Customer
Record
2 New
Customer
Record
Prepare
Shipping
Statement
4
Order
Record
D2 Item Master
File
Produce
Picking
Slips
3
Item
Record
Customer Name
and Address
D1 Customer
Master File
Warehouse
Ship
Customer
Order
5 Order
Goods
Customer
Shipping
Statement
Customer Name and Address
Order
Picking
List
Order
RecordPending
New
Customer
Information
Customer
Record
Item
Record
Back-Ordered Item Record
Shipment Details
Process numbers 3 and 4
are both batch processes,
but must be partitioned
into separate programs
because they are performed
Process 3 is a batch
process because it has
a computer output, the
Order Picking List, and
computer input (the
three files).
Indicate partitioning by
surrounding processes
included in a single
program with a dashed
line. The customer would
be added when placing
an order.
at different times.
Customer
FIGURE 7.20
Partitioning the data flow diagram
(showing part of Diagram 0).
CHAPTER 7 • USING DATA FLOW DIAGRAMS 215
Customer
E-TicketEmail
Confirmation Dates and
Airport Codes
Dates and
Airports
Flight Price
and Availability
Flight
Selection
Available Flight Details
Selected Flight
Credit Rejection
Customer
Information
Seat Selection
Available
Flight
Details
Available
Flights
Screen
Selected Flight and Seat Information
D1 Flight
D3 Customer Master
Select
Available
Seats
4
D5 Flight Reservation
Credit Card
Information
Credit Status
Credit
Confirmation
Credit Card
Information
Flight
Purchase
Flight Information
Flight
Information
Flight Reservation
Customer Record
Select
Flights
3
Book
Flight
5
Select Flight
Days and
Airports
1
Display
Available
Flights
2
Credit
Card
System
8
Produce
Customer
E-Ticket
Charge
Customer
Credit Card
6
Update
Airline
Flights
7
Airline
AirlineD2 Flight Details
Customer
FIGURE 7.21
Partitioning is important for Web-
based systems, as this physical
data flow diagram of an online
ticket purchasing system
demonstrates.
Another reason for partitioning is to keep the transaction secure. Once the seat has been selected,
the customer must confirm the reservation and supply credit card information. This is done using a
secure connection, and the credit card company is involved in validating the amount of purchase. The
secure connection means a separate process must be used. Once the credit card has been confirmed,
two additional processes must be included, one to format and send an email confirmation and an
e-ticket to the customer, and another to send notification of the flight purchase to the airline.
216 PART III • THE ANALYSIS PROCESS
C O N S U L T I N G O P P O R T U N I T Y 7 . 1
There’s No Business Like Flow Business
The phone at Merman’s Costume Rentals rings, and Annie Oak-
lea, head of costume inventory, picks it up and answers a query by
saying, “Let me take a look at my inventory cards. Sorry, it looks as
if there are only two male bear suits in inventory, with extra growly
expressions at that. We’ve had a great run on bear. When do you
need them? Perhaps one will be returned. No, can’t do it, sorry.
Would you like these two sent, regardless? The name of your estab-
lishment? Manhattan Theatre Company? London branch? Right.
Delightful company! I see by our account card that you’ve rented
from us before. And how long will you be needing the costumes?”
Figure 7.C1 is a data flow diagram that sets the stage for pro-
cessing of costume rentals from Merman’s. It shows rentals such as
the one Annie is doing for Manhattan Theatre Company.
After conversing for another few moments about shop policy
on alterations, Annie concludes her conversation by saying, “You
are very lucky to get the bears on such short notice. I’ve got an-
other company reserving them for the first week in July. I’ll put
you down for the bear suits, and they’ll be taken to you directly by
our courier. As always, prompt return will save enormous trouble
for us all.”
y
Credit
Approval
Availability
Information
Order Valid Order
Customer
Address
Order
Details
Shipping Details
Shipping
Information
Shipping
InvoiceProcess
Shipping
Invoices
3
Gather
Shipment
of Rental
Costumes
2
Edit
Order
1
Customers
Customers
D1
Costumes in
Inventory
D2
Customer
Information
D3 Customer
Order
FIGURE 7.C1
A data flow diagram for Merman’s Costume Rentals.
CHAPTER 7 • USING DATA FLOW DIAGRAMS 217
The entire procedure must be partitioned into a series of interacting processes, each with a
corresponding Web page or interaction with an external system. Each time a new data store is
used to obtain additional data, a process must be included to format or obtain the data. Each time
an external company or system is involved, a process needs to be partitioned into a separate pro-
gram. When processes or forms need to be revised, it is not a major task. The small size of the
programs makes them easy to change. In this way, the Web site is secure, efficient, and more eas-
ily maintained.
COMMUNICATING USING DATA FLOW DIAGRAMS
Data flow diagrams are useful throughout the analysis and design process. Use original, unex-
ploded data flow diagrams early when ascertaining information requirements. At this stage they
can help provide an overview of data movement through the system, lending a visual perspective
unavailable in narrative data.
A systems analyst might be quite competent at sketching through the logic of the data stream
for data flow diagrams, but to make the diagrams truly communicative to users and other mem-
bers of the project team, meaningful labels for all data components are also required. Labels
should not be generic, because then they do not tell enough about the situation at hand. All gen-
eral systems models bear the configuration of input, process, and output, so labels for a data flow
diagram need to be more specific than that.
Finally, remember that data flow diagrams are used to document the system. Assume that
data flow diagrams will be around longer than the people who drew them, which is, of course, al-
ways true if an external consultant is drawing them. Data flow diagrams can be used for docu-
menting high or low levels of analysis and helping to substantiate the logic underlying the data
flows of the organizations.
SUMMARY
To better understand the logical movement of data throughout a business, the systems analyst draws data
flow diagrams (DFDs). Data flow diagrams are structured analysis and design tools that allow the analyst to
comprehend the system and subsystems visually as a set of interrelated data flows.
Graphical representations of data movement storage and transformation are drawn with the use of four
symbols: a rounded rectangle to depict data processing or transformations, a double square to show an out-
side data entity (source or receiver of data), an arrow to depict data flow, and an open-ended rectangle to
show a data store.
The systems analyst extracts data processes, sources, stores, and flows from early organizational nar-
ratives or stories told by users or revealed by data and uses a top-down approach to first draw a context-level
data flow diagram of the system within the larger picture. Then a level 0 logical data flow diagram is drawn.
Processes are shown and data stores are added. Next, the analyst creates a child diagram for each of the
processes in Diagram 0. Inputs and outputs remain constant, but the data stores and sources change. Explod-
ing the original data flow diagram allows the systems analyst to focus on ever more detailed depictions of
data movement in the system. The analyst then develops a physical data flow diagram from the logical data
flow diagram, partitioning it to facilitate programming. Each process is analyzed to determine whether it
should be a manual or automated procedure.
Six considerations for partitioning data flow diagrams include whether processes are performed by dif-
ferent user groups, processes execute at the same times, processes perform similar tasks, batch processes can
be combined for efficient processing, processes may be combined into one program for consistency of data,
or processes may be partitioned into different programs for security reasons.
Merman’s costume rental enterprise is located in London’s
world-famous West End theatre district. When a theatre or television
production company lacks the resources (either time or expertise) to
construct a costume in its own shop, the cry goes up to “Ring up Mer-
man’s!” and it proceeds to rent what it needs with a minimum of fuss.
The shop (more aptly visualized as a warehouse) goes on for
three floors full of costume racks, holding thousands of costumes
hung together by historical period, then grouped as to whether they
are for men or women, and then by costume size.1 Most theatre
companies are able to locate precisely what they need through An-
nie’s capable assistance.
Now tailor-make the rental return portion of the data flow di-
agram given earlier. Remember that timely returns are critical for
keeping the spotlight on costumes rented from Merman’s.
1Western Costume Company in Hollywood, California, is said to have more
than 1 million costumes worth about $40 million.
218 PART III • THE ANALYSIS PROCESS
HYPERCASE® EXPERIENCE 7
“You take a very interesting approach to the problems we have
here at MRE. I’ve seen you sketching diagrams of our operation al-
most since the day you walked in the door. I’m actually getting used
to seeing you doodling away now. What did you call those? Oh, yes.
Context-level diagrams. And flow networks? Oh, no. Data flow di-
agrams. That’s it, isn’t it?”
HYPERCASE Questions
1. Find the data flow diagrams already drawn in MRE. Make a
list of those you found and add a column to show where in
the organization you found them.
2. Draw a context-level diagram modeling the Training Unit
Project Development process, one that is based on interviews
with relevant Training Unit staff. Then draw a level 0
diagram detailing the process.
FIGURE 7.HC1
In HyperCase you can click on elements in a data flow diagram.
KEYWORDS AND PHRASES
Ajax
base element
child diagram
context-level data flow diagram
data flow diagram
data flow diagram fragment
data-oriented system
data store
derived elements
event modeling
event response table
event trigger
exploding
external entity (source or destination)
functionally primitive
interface data flow
level 0 diagram
logical model
online process
parent process
partitioning
physical data store
physical model
primitive process
CHAPTER 7 • USING DATA FLOW DIAGRAMS 219
top-down approach
transaction data store
transforming process
unified modeling language (UML)
use case
vertical balancing
REVIEW QUESTIONS
1. What is one of the main methods available for the analyst to use when analyzing data-oriented
systems?
2. What are the four advantages of using a data flow approach over narrative explanations of data
movement?
3. What are the four data items that can be symbolized on a data flow diagram?
4. What is a context-level data flow diagram? Contrast it to a level 0 DFD.
5. Define the top-down approach as it relates to drawing data flow diagrams.
6. Describe what “exploding” data flow diagrams means.
7. What are the trade-offs involved in deciding how far data streams should be exploded?
8. Why is labeling data flow diagrams so important? What can effective labels on data flow diagrams
accomplish for those unfamiliar with the system?
9. What is the difference between a logical and physical data flow diagram?
10. List three reasons for creating a logical data flow diagram.
11. List five characteristics found on a physical data flow diagram that are not on a logical data flow
diagram.
12. When are transaction files required in the system design?
13. How can an event table be used to create a data flow diagram?
14. List the major sections of a use case.
15. How can a use case be used to create a data flow diagram?
16. What is partitioning, and how is it used?
17. How can an analyst determine when a user interface is required?
18. List three ways of determining partitioning in a data flow diagram.
19. List three ways to use completed data flow diagrams.
PROBLEMS
1. Up to this point you seem to have had excellent rapport with Kevin Cahoon, the owner of a musical
instrument manufacturing company. When you showed him a set of data flow diagrams you drew, he
wasn’t able to see how the system you were proposing was described in the diagrams.
a. In a paragraph, write down in general terms how to explain a data flow diagram to a user. Be
sure to include a list of symbols and what they mean.
b. It takes some effort to educate users about data flow diagrams. Is it worthwhile to share them
with users? Why or why not? Defend your response in a paragraph.
c. Compare data flow diagrams to use cases and use case scenarios. What do data flow diagrams
show that use case diagrams have a difficult time trying to explain?
2. Your latest project is to combine two systems used by Producers Financial. Angie Schworer’s loan
application system is fairly new, but has no documentation. Scott Wittman’s loan management
system is older, needs much revision, and the records are coded and kept independently of the other
system. The loan application system accepts applications, processes them, and recommends loans for
approval. The loan management system takes loans that have been approved and follows them
through their final disposition (paid, sold, or defaulted). Draw a context diagram and a level 1 data
flow diagram that shows what an idealized combined system would look like.
3. One common experience that students in every college and university share is enrolling in a college
course.
a. Draw a level 1 data flow diagram of data movement for enrollment in a college course. Use a
single sheet and label each data item clearly.
b. Explode one of the processes in your original data flow diagram into subprocesses, adding data
flows and data stores.
c. List the parts of the enrollment process that are “hidden” to the outside observer and about which
you have had to make assumptions to complete a second-level diagram.
4. Figure 7.EX1 is a level 1 data flow diagram of data movement in a Niagara Falls tour agency called
Marilyn’s Tours. Read it over, checking for any inaccuracies.
a. List and number the errors that you have found in the diagram.
b. Redraw and label the data flow diagram of Marilyn’s so that it is correct. Be sure that your new
diagram employs symbols properly so as to cut down on repetitions and duplications where possible.
220 PART III • THE ANALYSIS PROCESS
PRIVATE
TRAVEL
AGENT
AIRLINE
TRAVEL
AGENT
CASH
PAYING
TOURIST
Check
credit
Determine
tour
desired
Make
reservations
TOURIST
COST OF TOURS
TRAVEL BROCHURES
TRAVEL ITINERARY
CREDIT HISTORY
D1
1 2
3
D2
D3
D4
TOURIST
WITH
CHARGE
CARD
FIGURE 7.EX1
A hand-sketched data flow
diagram for Marilyn’s Tours.
5. Perfect Pizza wants to install a system to record orders for pizza and chicken wings. When regular
customers call Perfect Pizza on the phone, they are asked their phone number. When the number is
typed into a computer, the name, address, and last order date is automatically brought up on the
screen. Once the order is taken, the total, including tax and delivery, is calculated. Then the order is
given to the cook. A receipt is printed. Occasionally, special offers (coupons) are printed so the
customer can get a discount. Drivers who make deliveries give customers a copy of the receipt and a
coupon (if any). Weekly totals are kept for comparison with last year’s performance. Write a
summary of business activities for taking an order at Perfect Pizza.
6. Draw a context-level data flow diagram for Perfect Pizza (Problem 5).
7. Explode the context-level diagram in Problem 6 showing all the major processes. Call this Diagram
0. It should be a logical data flow diagram.
8. Draw a logical child diagram for Diagram 0 in Problem 7 for the process that adds a new customer if
he or she is not currently in the database (has never ordered from Perfect Pizza before).
9. Draw a physical data flow diagram for Problem 7.
10. Draw a physical data flow diagram for Problem 8.
11. Partition the physical data flow diagram in Problem 7, grouping and separating processes as you
deem appropriate. Explain why you partitioned the data flow diagram in this manner. (Remember
that you do not have to partition the entire diagram, only the parts that make sense to partition.)
12. a. Draw a logical child diagram for process 6 in Figure 7.17.
b. Draw a physical child diagram for process 6 in Figure 7.17.
13. Draw a physical data flow diagram for process 1.1 in Figure 7.18.
14. Create a context diagram for a real estate agent trying to create a system that matches buyers with
potential houses.
15. Draw a logical data flow diagram showing general processes for Problem 14. Call it Diagram 0.
16. Create a context-level diagram for billing in a dental office. External entities include the patients and
insurance companies.
17. Draw a logical data flow diagram showing general processes for Problem 16. Call it Diagram 0.
18. Create an event response table for the activities listed for World’s Trend order processing system.
19. Create a use case for the list of seven processes for the World’s Trend order processing system.
20. Create a CRUD matrix for the files of World’s Trend.
21. Use the principles of partitioning to determine which of the processes in Problem 18 should be
included in separate programs.
CHAPTER 7 • USING DATA FLOW DIAGRAMS 221
22. Create a physical data flow child diagram for the following situation: The local PC Users Group
holds meetings once a month with informative speakers, door prizes, and sessions for special interest
groups. A laptop computer is taken to the meetings, and is used to add the names of new members to
the group. The diagram represents an online process and is the child of process 1, ADD NEW
MEMBERS. The following tasks are included:
a. Key the new member information.
b. Validate the information. Errors are displayed on the screen.
c. When all the information is valid, a confirmation screen is displayed. The operator visually
confirms that the data are correct and either accepts the transaction or cancels it.
d. Accepted transactions add new members to the MEMBERSHIP MASTER file, which is stored
on the laptop hard drive.
e. Accepted transactions are written to a MEMBERSHIP JOURNAL file, which is stored on a
second hard drive.
GROUP PROJECTS
1. Meet with your group to develop a context-level data flow diagram for Maverick Transport (first
introduced in Chapter 4). Use any data you have subsequently generated with your group about
Maverick Transport. (Hint: Concentrate on one of the company’s functional areas rather than try to
model the entire organization.)
2. Using the context-level diagram developed in Problem 1, develop with your group a level 0 logical
data flow diagram for Maverick Transport. Make any assumptions necessary to draw it. List them.
3. With your group, choose one key process and explode it into a logical child diagram. Make any
assumptions necessary to draw it. List follow-up questions and suggest other methods to get more
information about processes that are still unclear to you.
4. Use the work your group has done to date to create a physical data flow diagram of a portion of the
new system you are proposing for Maverick Transport.
SELECTED BIBLIOGRAPHY
Ambler, S. W., and L. L. Constantine (Eds.). The Unified Process Inception Phase: Best Practices for
Implementing the UP. Lawrence, KS: CMP Books, 2000.
Gane, C., and T. Sarson. Structured Systems Analysis and Design Tools and Techniques. Englewood Cliffs,
NJ: Prentice Hall, 1979.
Hoffer, J. A., M. Prescott, and H. Topi. Modern Database Management, 9th ed. Upper Saddle River: Pren-
tice Hall, 2009.
Kotonya, G., and I. Sommerville. Requirements Engineering: Processes and Techniques. New York: John
Wiley & Sons, 1999.
Lucas, H. Information Systems Concepts for Management, 3d ed. New York: McGraw-Hill, 1986.
Martin, J. Strategic Data-Planning Methodologies. Englewood Cliffs, NJ: Prentice Hall, 1982.
Thayer, R. H., M. Dorfman, and D. Garr. Software Engineering: Vol. 1: The Development Process, 2d ed.
New York: Wiley-IEEE Computer Society Press, 2002.
222 PART III • THE ANALYSIS PROCESS
E P I S O D E 7
CPU CASE
ALLEN SCHMIDT, JULIE E. KENDALL, AND KENNETH E. KENDALL
Just Flowing Along
After the results of interviews, questionnaires, and prototyping are gathered and analyzed, Anna and Chip
move to the next step, modeling the system. Their strategy is to create a layered set of data flow diagrams
and then describe the components.
Anna says, “Let’s take the current logical data flow diagrams and add all the requirements and desired
features of the new system. We can also eliminate any of the unnecessary features that wouldn’t be imple-
mented in the new system.”
Anna then takes the context-level diagram (shown in the CPU Case in Chapter 2) and adds many of the
reports, inquiries, and other information that will be included in the new system. The finished context-level di-
agram is shown in Figure E7.1. Notice the many new data flows. In the proposed system, the computer MAIN-
Computer
Inventory
System
0
Deleted Computer ID
Completed Installation Listing
Computer Change Information
Maintenance
Management
Management
Installation Report
Management Reports
Inquiry Responses
Software Cross-Reference Report
MaintenanceMaintenance Reports
New Computer Form
Shipping/
Receiving
Department
Clerical
Support
Computer Received Listing
Detailed Reports
Management Inquiries
Software Inquiry
Faculty
Faculty
Inquiry Response
Software
User
Installation Notification Report
Software Received Form
Installation Listing
FIGURE E7.1
Context-level data flow diagram,
Proposed CPU Computer
Inventory 15 System.
CHAPTER 7 • USING DATA FLOW DIAGRAMS 223
TENANCE staff will receive reports that currently are not available. One report, for example, helps to auto-
mate the installation of new computers, the INSTALLATION LISTING, and another report intended for man-
agement shows which software is located on which machines, the SOFTWARE CROSS-REFERENCE
REPORT.
Anna continues, “Let’s expand this to Diagram 0 for the new system. This will be a logical data flow
diagram because we want to focus on the business needs. Perhaps it would be best if we work in a team for
this diagram.”
After working for several hours that afternoon and a good portion of the next morning, they complete
the diagram. It is reviewed and modified with some minor changes. The finished Diagram 0 is shown in Figure
E7.2 and Figure E7.3. Because it is a logical diagram, it shows no physical data entry method or validation
Computer
Record
Add New
Computer
2
D6 Pending Computer
Orders
Pending
Order
Shipping/
Receiving
Department
New Computer Form
Maintenance
Installation Listing
Clerical
Support
Computer Received Listing
Management
Installation
Report
Install
Computer
5
Produce
Software/
Hardware
Cross-Ref.
Report
9
D4 Computer Master
New
Computer
New
Software
Add Software
Record
1
D5 Software Master
Software
Record
Software
Installation
List
Software Received Form Shipping/
Receiving
Department
Install
Software
8
Installation Notification Report
Software
User
D6 Pending
Computer Orders
Change
Computer
6
Maintenance
Completed
Installation Listing
Computer Change
Information
Install Update
Changed
Computer
Install Update
Management
Software Cross-
Reference Report
FIGURE E7.2
Diagram 0: Proposed CPU
Computer Inventory System
(part 1).
224 PART III • THE ANALYSIS PROCESS
operations, nor does it show any temporary data stores or transaction files. Timing is not a consideration (an
example is the ADD NEW COMPUTER process, in which it appears that orders are updated and reports pro-
duced simultaneously).
“This finally looks right,” muses Chip. “All the major processes, data flows, and data stores are ac-
counted for. And the overall diagram doesn’t look too complicated.”
“Putting all of the inquiries into one subsystem and all the reports into another helped. Remember how
complex the original diagram was?” asks Anna.
“I sure do,” Chip replies. “I started to think we were tackling too much at once with this system. At
least it’s more manageable now. Now that this is finished, what’s the next step?”
“We need to describe Diagram 0 in more detail,” remarks Anna. “We’ll do this by drawing a level 1 di-
agram for each of the processes in Diagram 0. Just as a parent may have many children, there may be many
level 1 diagrams for a specific level 0 diagram. For this reason many analysts refer to them as parent and
child diagrams.”
“I’ve been working on Diagram 1, an explosion of process 1, called ADD SOFTWARE RECORD.
Perhaps you would like to review the finished result,” remarks Anna. This Diagram 1 can be seen in
Figure E7.4.
Chip and Anna both use Visible Analyst to verify that the data flow diagram syntax is correct. Vis-
ible Analyst will also check that the levels balance among data flow diagram processes and the child
diagrams.
Delete
Computer
4
Deleted
Computer ID Deleted Computer ID
Management Reports
Hardware Record
Report
Subsystem
3
Software Record
Software Record
Maintenance Reports
Detailed Report
7
Inquiry
Subsystem
Inquiry Responses
Management Inquiries
Hardware Record
Software
Inquiry
Inquiry
Response
Maintenance
Clerical
Support
Management
Faculty
D4 Computer Master
D5 Software Master
D4 Computer Master
FIGURE E7.3
Diagram 0: Proposed CPU
Computer Inventory System
(part 2).
CHAPTER 7 • USING DATA FLOW DIAGRAMS 225
Software
Record
Key
Software
Record
1.1Software Received
Form
D5 Software Master
Validate
Software
Record
1.2
Confirm New
Software
1.3
Keyed Software
Valid
Software
Create
Software Log
File
1.4
Confirmed Software
Software
Log
Record
Software Installation
List
D7 Software Log
Create
Software
Install.
Listing
1.6
Software
Log
Record
Add New
Software
Record
1.5
D5 Software Master
New
Software
Confirmed Software
FIGURE E7.4
Diagram 1: ADD
SOFTWARE RECORD
from the proposed CPU
Computer System.
EXERCISES
E-1. Use Microsoft Visio or Visible Analyst to view the context-level diagram for the proposed computer system. If
you are using Visible Analyst, experiment with the Zoom controls on the lower toolbar to change from a global
to a detailed view of the diagram. Double click on the central process to examine the repository entry for it. Click
Exit to return to the diagram. Right click on the central process to display the object menu for the central process.
Use the Explode option to display Diagram 0, representing the details of the central process. Maximize the win-
dow and double click on some of the data stores and data flows to examine their repository entries. Click Exit to
return to the diagram. Zoom to 100 percent and scroll around the screen to view different regions of the diagram;
then print the diagram using a landscape orientation. Click FILE, NEST, and PARENT to return to the context-
level diagram. Maximize the window.
E-2. Modify Diagram 0 of the proposed computer system. Add process 10, UPDATE SOFTWARE RECORD. You
will have to move the MANAGEMENT external entity lower in the diagram; place it to the left of process 7,
INQUIRY SUBSYSTEM. Create a repository entry for the process and then click Exit to return to the dia-
gram. Print the diagram using a landscape orientation.
226 PART III • THE ANALYSIS PROCESS
Input: 1. SOFTWARE CHANGE DATA, from CLERICAL SUPPORT
2. SOFTWARE DELETE ID, from MANAGEMENT
Output: 1. SOFTWARE RECORD, an update from the SOFTWARE MASTER data store
E-3. Modify Diagram 10, UPDATE SOFTWARE RECORD. Connect to the SOFTWARE MASTER using
a double-headed arrow. (If you are using Visible Analyst, right click on the data flow, select Change
Item, then select Change Type, and Terminator Type, Double Filled.) Print the final diagram.
E-4. Modify Diagram 8, INSTALL SOFTWARE. Add the following processes. Zoom in and scroll around
the screen, checking your diagram for a professional appearance. Print the final result.
Process: 8.2 INSTALL COMPUTER SOFTWARE
Input: 1. COMPUTER LOCATION, from process 8.1
2. SOFTWARE TITLE AND VERSION, from process 8.1
Output: 1. INSTALLED SOFTWARE FORM
Process: 8.3 CREATE INSTALLED SOFTWARE TRANSACTION
Input: 1. INSTALLED SOFTWARE FORM
Output: 1. INSTALLED SOFTWARE TRANSACTION, to INSTALLED SOFTWARE data
store
Process: 8.4 UPDATE SOFTWARE MASTER
Input: 1. INSTALLED SOFTWARE TRANSACTION
Output: 1. SOFTWARE MASTER, update
Process: 8.5 PRODUCE INSTALLATION NOTIFICATION
Input: 1. INSTALLED SOFTWARE TRANSACTION
2. SOFTWARE MASTER, from the SOFTWARE MASTER data store
3. HARDWARE MASTER, from the COMPUTER MASTER data store
Output: 1. INSTALLATION NOTIFICATION LISTING, an interface flow
E-5. Modify Diagram 6, CHANGE COMPUTER RECORD. This is an online program to change com-
puter information. Add the following three processes. Create repository entries for each of the
processes, as well as the data flow. When completed, zoom to 100 percent and change any data flow
arrows that are not straight, and move data flow labels for a professional-looking graph. Print the di-
agram using landscape orientation.
a. Process 6.6, VALIDATE CHANGES. This process edits each change field for validity. The input
is the KEYED CHANGES. The output fields are CHANGE ERRORS (interface flow) and
VALID CHANGES (to process 6.7).
b. Process 6.7, CONFIRM CHANGES. This process is a visual confirmation of the changes. The
operator has a chance to reject the changes or accept them. Input is the VALID CHANGES. The
output fields are REJECTED CHANGES (interface flow) and CONFIRMED CHANGES (to
process 6.8).
c. Process 6.8, REWRITE COMPUTER MASTER. This process rewrites the COMPUTER
MASTER record with the changes on the record. Input is the CONFIRMED CHANGES. Out-
put flow is the COMPUTER MASTER record, to the COMPUTER MASTER data store.
E-6. Create the child data flow diagram for process 4, DELETE COMPUTER. The following table sum-
marizes input, process, and output. Describe each process and data flow in the repository. When com-
pleted, zoom to 100 percent, move any data flow lines that are not aligned correctly, move the data
flow labels for a professional-looking graph, and print the diagram.
Process: 4.1 KEY DELETE ID
Description: The computer ID is keyed interactively
Input: 1. DELETED COMPUTER ID
Output: 1. KEYED DELETE
Process: 4.2 OBTAIN COMPUTER RECORD
Description: COMPUTER MASTER record is read to ensure that it exists
Input: 1. KEYED DELETE (interface)
2. COMPUTER RECORD, from the COMPUTER MASTER data store
Output: 1. NOT FOUND ERROR (interface)
2. VALID COMPUTER RECORD
CHAPTER 7 • USING DATA FLOW DIAGRAMS 227
Process: 4.3 CONFIRM COMPUTER DELETION
Description: The computer information is displayed on the screen for operator confirmation or
rejection
Input: 1. VALID COMPUTER RECORD
Output: 1. REJECTED DELETION (interface)
2. CONFIRMED DELETION
Process: 4.4 DELETE COMPUTER RECORD
Description: The computer record is logically (not physically) deleted from the COMPUTER
MASTER data store by rewriting the record with an I for inactive in the Record
Code field
Input: 1. CONFIRMED DELETION
Output: 1. DELETED COMPUTER, a double-headed arrow to the COMPUTER
MASTER data store
The exercises preceded by a www icon indicate value-added material is available from the Web site at
www.pearsonhighered.com/kendall. Students can download a sample Microsoft Visio, Visible Analyst, Microsoft Project, or
a Microsoft Access file that can be used to complete the exercises.
www.pearsonhighered.com/kendall
C H A P T E R 8
Analyzing Systems
Using Data Dictionaries
LEARNING OBJECTIVES
Once you have mastered the material in this chapter you will be able to:
1. Understand how analysts use data dictionaries for analyzing data-oriented systems.
2. Create data dictionary entries for data processes, stores, flows, structures, and logical and
physical elements of the systems being studied, based on DFDs.
3. Understand the concept of a repository for analysts’ project information and the role of
CASE tools in creating them.
4. Recognize the functions of data dictionaries in helping users update and maintain
information systems.
After successive levels of data flow diagrams are complete, systems ana-
lysts use them to help catalog the data processes, flows, stores, structures,
and elements in a data dictionary. Of particular importance are the names
used to characterize data items.When given an opportunity to name com-
ponents of data-oriented systems, the systems analyst needs to work at
making the name meaningful but exclusive of other existing data component names.This chap-
ter covers the data dictionary, which is another method to aid in the analysis of data-oriented
systems.
THE DATA DICTIONARY
The data dictionary is a specialized application of the kinds of dictionaries used as references in
everyday life. The data dictionary is a reference work of data about data (that is, metadata), one
that is compiled by systems analysts to guide them through analysis and design. As a document,
the data dictionary collects and coordinates specific data terms, and it confirms what each term
means to different people in the organization. The data flow diagrams covered in Chapter 7 are
an excellent starting point for collecting data dictionary entries.
One important reason for maintaining a data dictionary is to keep clean data. This means that
data must be consistent. If you store data about a man’s sex as “M” in one record, “Male” in a
second record, and as the number “1” in a third record, the data are not clean. Keeping a data dic-
tionary will help in this regard.
Automated data dictionaries (part of the CASE tools mentioned earlier) are valuable for their
capacity to cross-reference data items, thereby allowing necessary program changes to all pro-
grams sharing a common element. This feature supplants changing programs on a haphazard ba-
sis, or it prevents waiting until the program won’t run because a change has not been implemented
across all programs sharing the updated item. Clearly, automated data dictionaries become im-
portant for large systems that produce several thousand data elements requiring cataloging and
cross-referencing.
228
Need for Understanding the Data Dictionary
Many database management systems now come equipped with an automated data dictionary.
These dictionaries can be either elaborate or simple. Some computerized data dictionaries auto-
matically catalog data items when programming is done; others simply provide a template to
prompt the person filling in the dictionary to do so in a uniform manner for every entry.
Despite the existence of automated data dictionaries, understanding what data compose a
data dictionary, the conventions used in data dictionaries, and how a data dictionary is developed
are issues that remain pertinent for the systems analyst during the systems effort. Understanding
the process of compiling a data dictionary can aid the systems analyst in conceptualizing the sys-
tem and how it works. The upcoming sections allow the systems analyst to see the rationale be-
hind what exists in automated data dictionaries.
In addition to providing documentation and eliminating redundancy, the data dictionary may
be used to:
1. Validate the data flow diagram for completeness and accuracy.
2. Provide a starting point for developing screens and reports.
3. Determine the contents of data stored in files.
4. Develop the logic for data flow diagram processes.
5. Create XML (extensible markup language).
THE DATA REPOSITORY
Although the data dictionary contains information about data and procedures, a larger collection
of project information is called a repository. The repository concept is one of the many impacts
of CASE tools and may contain the following:
1. Information about the data maintained by the system, including data flows, data stores,
record structures, elements, entities, and messages.
2. Procedural logic and use cases.
3. Screen and report design.
4. Data relationships, such as how one data structure is linked to another.
5. Project requirements and final system deliverables.
6. Project management information, such as delivery schedules, achievements, issues that
need resolving, and project users.
The data dictionary is created by examining and describing the contents of the data flows, data
stores, and processes, as illustrated by Figure 8.1. Each data store and data flow should be defined
and then expanded to include the details of the elements it contains. The logic of each process
should be described using the data flowing into or out of the process. Omissions and other design
errors should be noted and resolved.
CHAPTER 8 • ANALYZING SYSTEMS USING DATA DICTIONARIES 229
Data Flow Diagram
Data Store
Data Flow
Data Dictionary
Data
Flow
Description
Form
XXX
Data
Structure
XXX
Data
Store
Description
Form
XXX
Data
Elements
XXX
Data
Structure
XXX
Data
Elements
XXX
FIGURE 8.1
How data dictionaries relate to
data flow diagrams.
230 PART III • THE ANALYSIS PROCESS
The four data dictionary categories—data flows, data structures, data elements, and data
stores—should be developed to promote understanding of the data of the system. Procedural logic
is presented in Chapter 9, entities are discussed in Chapter 13, and messages and use cases are
presented in Chapters 2 and 10.
To illustrate how data dictionary entries are created, we use an example for World’s Trend
Catalog Division. This company sells clothing and other items by mail order using a toll-free
phone order system (or faxing the mail order form), and via the Internet using customized Web
forms. Regardless of the origin of the order, the underlying data captured by the system are the
same for all three methods.
The World’s Trend order form shown in Figure 8.2 gives some clues about what to enter into
a data dictionary. First, you need to capture and store the name, address, and telephone number
of the person placing the order. Then you need to address the details of the order: the item de-
scription, size, color, price, quantity, and so on. The customer’s method of payment must also be
determined. Once you have done this, these data may be stored for future use. This example is
used throughout this chapter to illustrate each part of the data dictionary.
Defining the Data Flows
Data flows are usually the first components to be defined. System inputs and outputs are deter-
mined from interviewing, observing users, and analyzing documents and other existing systems.
The information captured for each data flow may be summarized using a form containing the fol-
lowing information:
1. ID, an optional identification number. Sometimes the ID is coded using a scheme to
identify the system and the application in the system.
2. A unique descriptive name for this data flow. This name is the text that should appear on
the diagram and be referenced in all descriptions using the data flow.
3. A general description of the data flow.
4. The source of the data flow. The source could be an external entity, a process, or a data
flow coming from a data store.
5. The destination of the data flow (same items listed under the source).
6. An indication of whether the data flow is a record entering or leaving a file or a record
containing a report, form, or screen. If the data flow contains data that are used between
processes, it is designated as internal.
7. The name of the data structure describing the elements found in this data flow. For a
simple data flow, it could be one or several elements.
8. The volume per unit of time. The data could be records per day or any other unit of time.
9. An area for further comments and notations about the data flow.
FIGURE 8.2
An online order form from World's
Trend Catalog Divison.
CHAPTER 8 • ANALYZING SYSTEMS USING DATA DICTIONARIES 231
Once again we can use our World’s Trend Catalog Division example from Chapter 7 to illustrate
a completed form. Figure 8.3 is an example of the data flow description representing the screen
used to add a new CUSTOMER ORDER and to update the customer and item files. Notice that
the external entity CUSTOMER is the source and that PROCESS 1 is the destination, providing
linkage back to the data flow diagram. The checked box for “Screen” indicates that the flow rep-
resents an input screen. It could be any screen, such as a Web page, graphical user interface (GUI),
mobile phone, or perhaps a mainframe screen. The detailed description of the data flow could ap-
pear on this form, or it could be represented as a data structure.
Data flows for all inputs and outputs should be described first, because they usually repre-
sent the human interface, followed by the intermediate data flows and the data flows to and from
data stores. The detail of each data flow is described using elements, sometimes called fields; a
data structure; or a group of elements.
A simple data flow may be described using a single element, such as a customer number used
by an inquiry program to find the matching customer record.
Describing Data Structures
Data structures are usually described using algebraic notation. This method allows the analyst to
produce a view of the elements that make up the data structure along with information about those
elements. For instance, the analyst will denote whether there are many of the same element in the
data structure (a repeating group), or whether two elements may exist mutually exclusive of each
other. The algebraic notation uses the following symbols:
1. An equal sign (�) means “is composed of.”
2. A plus sign (�) means “and.”
3. Braces { } indicate repetitive elements, also called repeating groups or tables. There may
be one repeating element or several in the group. The repeating group may have
conditions, such as a fixed number of repetitions, or upper and lower limits for the number
of repetitions.
Customer
Process 1
Customer Order
Contains customer order information and is used to update the
customer master and item files and to produce an order record.
ID
Name
Description
Data Flow Description
Comments
Source
Destination
Type of Data Flow
File Screen Report Form Internal
Data Structure Traveling with the Flow
Volume/Time
Order Information
10/hourOrder record information for one customer order. The order
may be received by Web entry, email, FAX, or by the customer telephoning
the order-processing department directly.
FIGURE 8.3
An example of a data flow
description from World’s Trend
Catalog Division.
232 PART III • THE ANALYSIS PROCESS
4. Brackets [ ] represent an either/or situation. Either one element may be present or another,
but not both. The elements listed between the brackets are mutually exclusive.
5. Parentheses ( ) represent an optional element. Optional elements may be left blank on entry
screens and may contain spaces or zeros for numeric fields in file structures.
Figure 8.4 is an example of the data structure for adding a customer order at World’s Trend Cat-
alog Division. Each NEW CUSTOMER screen consists of the entries found on the right side of
the equal signs. Some of the entries are elements, but others, such as CUSTOMER NAME, AD-
DRESS, and TELEPHONE, are groups of elements or structural records. For example, CUS-
TOMER NAME is made up of FIRST NAME, MIDDLE INITIAL, and LAST NAME. Each
structural record must be further defined until the entire set is broken down into its component el-
ements. Notice that following the definition for the CUSTOMER ORDER screen are definitions
for each structural record. Even a field as simple as the TELEPHONE NUMBER is defined as a
structure so that the area code may be processed individually.
Customer Order = Customer Number +Customer Name +
Address +
Telephone +
Catalog Number +
Order Date +
{Available Order Items} +Merchandise Total +(Tax) +
Shipping and Handling +Order Total +
Method of Payment +(Credit Card Type) +(Credit Card Number) +(Expiration Date)
Customer Name = First Name +
(Middle Initial) +
Last Name
Address = Street +
(Apartment) +
City +
State +
Zip +
(Zip Expansion) +
(Country)
Telephone = Area Code +
Local Number
Available Order Items = Quantity Ordered +Item Number +
Item Description +Size +
Color +
Price +
Item Total
Method of Payment = [Check Charge Money Order]Credit Card Type = [World’s Trend American Express MasterCard Visa]
FIGURE 8.4
Data structure example for adding
a customer order at World’s Trend
Catalog Division.
CHAPTER 8 • ANALYZING SYSTEMS USING DATA DICTIONARIES 233
Structural records and elements that are used in many different systems are given a nonsystem-
specific name, such as street, city, and zip, that does not reflect the functional area in which they are
used. This method allows the analyst to define these records once and use them in many different
applications. For example, a city may be a customer city, supplier city, or employee city. Notice the
use of parentheses to indicate that (MIDDLE INITIAL), (APARTMENT), and (ZIP EXPANSION)
are optional ORDER information (but not more than one). Indicate the OR condition by enclosing
the options in square brackets and separating them with the symboll .
Logical and Physical Data Structures
When data structures are first defined, only the data elements that the user would see, such as a name,
address, and balance due, are included. This stage is the logical design, showing what data the busi-
ness needs for its day-to-day operations. As we learned from HCI, it is important that the logical de-
sign accurately reflect the mental model of how the user views the system. Using the logical design
as a basis, the analyst then designs the physical data structures, which include additional elements
necessary for implementing the system. Examples of physical design elements are the following:
1. Key fields used to locate records in a database table. An example is an item number, which
is not required for a business to function but is necessary for identifying and locating
computer records.
2. Codes to identify the status of master records, such as whether an employee is active
(currently employed) or inactive. Such codes can be maintained on files that produce tax
information.
3. Transaction codes are used to identify types of records when a file contains different record
types. An example is a credit file containing records for returned items as well as records
of payments.
4. Repeating group entries containing a count of how many items are in the group.
5. Limits on the number of items in a repeated group.
6. A password used by a customer accessing a secure Web site.
Figure 8.5 is an example of the data structure for a CUSTOMER BILLING STATEMENT,
one showing that the ORDER LINE is both a repeating item and a structural record. The ORDER
LINE limits are from 1 to 5, indicating that the customer may order from one to five items on this
screen. Additional items would appear on subsequent orders.
The repeating group notation may have several other formats. If the group repeats a fixed
number of times, that number is placed next to the opening brace, as in 12 {Monthly Sales},
where there are always 12 months in the year. If no number is indicated, the group repeats indef-
initely. An example is a table containing an indefinite number of records, such as Customer Mas-
ter Table � {Customer Records}.
The number of entries in repeating groups may also depend on a condition, such as an entry
on the Customer Master Record for each item ordered. This condition could be stored in the data
dictionary as {Items Purchased} 5, where 5 is the number of items.
-
-
Customer Billing Statement = Current Date +
Customer Number +
Customer Name +
Address +
{Order Line} +
(Previous Payment Amount) +Total Amount Owed +(Comment)
Order Line =
Order Number +
Order Date +
Order Total
5
1
FIGURE 8.5
Physical elements added to a data
structure.
234 PART III • THE ANALYSIS PROCESS
Data Elements
Each data element should be defined once in the data dictionary and may also be entered previ-
ously on an element description form, such as the one illustrated in Figure 8.6. Characteristics
commonly included on the element description form are the following:
1. Element ID. This optional entry allows the analyst to build automated data dictionary
entries.
2. The name of the element. The name should be descriptive, unique, and based on what the
element is commonly called in most programs or by the major user of the element.
3. Aliases, which are synonyms or other names for the element. Aliases are names used by
different users in different systems. For example, a CUSTOMER NUMBER may also be
called a RECEIVABLE ACCOUNT NUMBER or a CLIENT NUMBER.
4. A short description of the element.
5. Whether the element is base or derived. A base element is one that is initially keyed into
the system, such as a customer name, address, or city. Base elements must be stored in
files. Derived elements are created by processes as the result of a calculation or a series of
decision-making statements.
6. The length of an element. Some elements have standard lengths. In the United States, for
example, lengths for state name abbreviations, zip codes, and telephone numbers are all
Customer NumberClient NumberReceivable Account NumberUniquely identifies a customer who has made any business
transaction within the last five years.
ID
Name
Alias
Alias
Description
Element Description Form
Length
Dec. Pt.
Alphabetic
Input Format
Alphanumeric
Output Format
Date
Default Value
Numeric
Continuous or Discrete
Base or Derived
Comments
Element Characteristics6
9 (6)
9 (6)
Validation CriteriaContinuous
Upper
Limit
Lower
Limit
<999999
>0
Discrete
Value Meaning
The customer number must pass a modulus-11 check digit test.
It is derived because it is computer generated and a check digit is added.
FIGURE 8.6
An element description form
example from World’s Trend
Catalog Division.
CHAPTER 8 • ANALYZING SYSTEMS USING DATA DICTIONARIES 235
standard. For other elements, the lengths may vary, and the analyst and user community
must jointly decide the final length based on the following considerations:
a. Numeric amount lengths should be determined by figuring the largest number the
amount will probably contain and then allowing reasonable room for expansion.
Lengths designated for totals should be large enough to accommodate the sum of the
numbers accumulated in them.
b. Name and address fields may be given lengths based on the following table. For
example, a last name field of 11 characters will accommodate 98 percent of the last
names in the United States.
c. For other fields, it is often useful to examine or sample historical data found in the
organization to determine a suitable field length.
Field Length Percentage of Data
That Will Fit (U.S.)
Last Name 11 98
First Name 18 95
Company Name 20 95
Street 18 90
City 17 99
If the element is too small, the data that need to be entered will be truncated. The analyst
must decide how that will affect the system outputs. For example, if a customer’s last name
is truncated, mail would usually still be delivered; if an email address is truncated,
however, it will be returned as not found.
7. The type of data—numeric, date, alphabetic, varchar, or character, which is sometimes
called alphanumeric or text data. Varchar data may contain any number of characters, up to
a limit set by the database software. When using varchar, specifying the length is optional.
Several of these formats are shown in Figure 8.7. Character fields may contain a mixture of
letters, numbers, and special characters. If the element is a date, its format—for example,
MMDDYYYY—must be determined. If the element is numeric, its storage type should be
determined.
Personal computer formats, such as currency, number, or scientific, depend on how the
data will be used. Number formats are further defined as integer, long integer, single
precision, double precision, and so on. There are many other types of formats used with PC
Data Type
Bit A value of 1 or 0, a true/false value
Char, varchar, text Any alphanumeric character
Datetime, smalldatetime Alphanumeric data, several formats
Decimal, numeric Numeric data that are accurate to the least significant
digit; can contain a whole and decimal portion
Float, real Floating-point values that contain an approximate
decimal value
Int, smallint, tinyint Only integer (whole digit) data
Binary, varbinary, image Binary strings (sound, pictures, video)
Cursor, timestamp, uniqueidentifier A value that is always unique within a database
Autonumber A number that is always incremented by one when a
record is added to a database table
Currency, money, smallmoney Monetary numbers accurate to four decimal places
Meaning
FIGURE 8.7
Some examples of data formats
used in PC systems.
236 PART III • THE ANALYSIS PROCESS
Formatting Character Meaning
May enter or display/print any character
Enter or display only numbers
Display leading zeros as spaces
Insert commas into a numeric display
Insert a period into a numeric display
Insert slashes into a numeric display
Insert a hyphen into a numeric display
Indicate a decimal position (when the decimal point is not included)
X
9
Z
,
·
/
–
V
FIGURE 8.8
Format character codes.
systems. Unicode is a standardized coding system for defining graphic symbols, such as
Chinese or Japanese characters. Unicode is described in greater detail in a later chapter.
There are three standard formats for mainframe computers: zoned decimal, packed
decimal, and binary. The zoned decimal format is used for printing and displaying data.
The packed decimal format is commonly used to save space on file layouts and for
elements that require a high level of arithmetic to be performed on them. The binary format
is suitable for the same purposes as the packed decimal format but is less commonly used.
8. Input and output formats should be included, using special coding symbols to indicate how
the data should be presented. These symbols and their uses are illustrated in Figure 8.8.
Each symbol represents one character or digit. If the same character repeats several times,
the character followed by a number in parentheses indicating how many times the
character repeats is substituted for the group. For example, XXXXXXXX would be
represented as X(8).
9. Validation criteria for ensuring that accurate data are captured by the system. Elements are
either discrete, meaning they have certain fixed values, or continuous, with a smooth range
of values. Here are common editing criteria:
a. A range of values is suitable for elements that contain continuous data. For example, in
the United States a student grade point average may be from 0.00 through 4.00. If there
is only an upper or lower bound to the data, a limit is used instead of a range.
b. A list of values is indicated if the data are discrete. Examples are codes representing the
colors of items for sale in World’s Trend’s catalog.
c. A table of codes is suitable if the list of values is extensive (for example, state
abbreviations, telephone country codes, or U.S. telephone area codes.)
d. For key or index elements, a check digit is often included.
10. Any default value the element may have. The default value is displayed on entry screens
and is used to reduce the amount of keying that the operator may have to do. Usually,
several fields in each system have default values. When using GUI lists or drop-down
lists, the default value is the one currently selected and highlighted. When using radio
buttons, the option for the default value is selected, and when using check boxes, the
default value (either “yes” or “no”) determines whether or not the check box will have an
initial check in it.
11. An additional comment or remarks area. This might be used to indicate the format of the
date, special validation that is required, the check digit method used (explained in
Chapter 15), and so on.
Data element descriptions such as CUSTOMER NUMBER may be called CLIENT NUMBER
elsewhere in the system (perhaps old code written with this alias needs to be updated).
Another kind of data element is an alphabetic element. At World’s Trend Catalog Division,
codes are used to describe colors: for example, BL for blue, WH for white, and GR for green.
When this element is implemented, a table will be needed for users to look up the meanings of
these codes. (Coding is discussed further in Chapter 15.)
Data Stores
All base elements must be stored in the system. Derived elements, such as the employee year-to-
date gross pay, may also be stored in the system. Data stores are created for each different data
CHAPTER 8 • ANALYZING SYSTEMS USING DATA DICTIONARIES 237
entity being stored. That is, when data flow base elements are grouped together to form a struc-
tural record, a data store is created for each unique structural record.
Because a given data flow may only show part of the collective data that a structural record
contains, you may have to examine many different data flow structures to arrive at a complete
data store description.
Figure 8.9 is a typical form used to describe a data store. The information included on the
form is as follows:
1. The data store ID. The ID is often a mandatory entry to prevent the analyst from storing
redundant information. An example would be D1 for the CUSTOMER MASTER.
2. The data store name, which is descriptive and unique.
3. An alias for the table, such as CLIENT MASTER for the CUSTOMER MASTER.
4. A short description of the data store.
5. The file type, either computer or manual.
6. The format designates whether the file is a database table or if it has the format of a simple
flat file. (File formats are detailed in Chapter 13.)
7. The maximum and average number of records on the file as well as the growth per year.
This information helps the analyst to predict the amount of disk space required for the
application and is necessary for hardware acquisition planning.
File Type Computer Manual
File Format Database
Indexed Sequential Direct
Record Size (Characters):
Block Size:
Number of Records: Maximum
Average:
Percent Growth per Year:
%
D 1
Customer MasterClient Master
Contains a record for each customer.
ID
Name
Alias
Description
Data Store Description Form
Comments
Data Store Characteristics
200
4000
45,000
42,000
6
Data Set NameCopy MemberData StructurePrimary Key
Secondary Keys
Customer.MSTCustmast
Customer RecordCustomer NumberCustomer NameZip
Year-to-Date Amount Purchased
The Customer Master records are copied to a history file and
purged if the customer has not purchased an item within the past
five years. A customer may be retained even if he or she has not made a
purchase by requesting a catalog.
FIGURE 8.9
An example of a data store form
description for World’s Trend
Catalog Division.
238 PART III • THE ANALYSIS PROCESS
8. The file or data set name specifies the file name, if known. In the initial design stages, this
item may be left blank. An electronic form produced using Visible Analyst is shown in
Figure 8.10. This example shows that the CUSTOMER MASTER is stored on a computer
in the form of a database with a maximum number of 45,000 records. (Records and the
keys used to sort the database are explained in Chapter 13.)
9. The data structure should use a name found in the data dictionary, providing a link to the
elements for this data store. Alternatively, the data elements could be described on the data
store description form or on the CASE tool screen for the data store. Primary and
secondary keys must be elements (or a combination of elements) found in the data
structure. In the example, the CUSTOMER NUMBER is the primary key and should be
unique. The CUSTOMER NAME, ZIP, and YEAR-TO-DATE AMOUNT PURCHASED
are secondary keys used to control record sequencing on reports and to locate records
directly. (Keys are discussed in Chapter 13.) Comments are used for information that does
not fit into any of the above categories. They may include update or backup timing,
security, or other considerations.
CREATING THE DATA DICTIONARY
Data dictionary entries may be created after the data flow diagram has been completed, or they
may be constructed as the data flow diagram is being developed. The use of algebraic notation
and structural records allows the analyst to develop the data dictionary and the data flow diagrams
using a top-down approach. For instance, the analyst may create a Diagram 0 data flow after the
first few interviews and, at the same time, make the preliminary data dictionary entries. Typically,
these entries consist of the data flow names found on the data flow diagram and their correspond-
ing data structures.
After conducting several additional interviews with users to learn the details of the system
and the ways they interact with it, the analyst will expand the data flow diagram and create the
child diagrams. The data dictionary is then modified to include the new structural records and el-
ements gleaned from further interviews, observation, and document analysis.
Each level of a data flow diagram should use data appropriate for the level. Diagram 0 should
include only forms, screens, reports, and records. As child diagrams are created, the data flow into
and out of the processes becomes more and more detailed, including structural records and elements.
Figure 8.11 illustrates a portion of two data flow diagram levels and corresponding data dic-
tionary entries for producing an employee paycheck. Process 5, found on Diagram 0, is an
FIGURE 8.10
Visible Analyst screen showing a
data store description.
CHAPTER 8 • ANALYZING SYSTEMS USING DATA DICTIONARIES 239
overview of the production of an EMPLOYEE PAYCHECK. The corresponding data dictionary
entry for EMPLOYEE RECORD shows the EMPLOYEE NUMBER and four structural records,
the view of the data obtained early in the analysis. Similarly, TIMEFILE RECORD and the EM-
PLOYEE PAYCHECK are also defined as a series of structures.
It is important that the data flow names on the child data flow diagram are contained as ele-
ments or structural records in the data flow on the parent process. Returning to the example,
WAGE INFORMATION (input into process 5.3, COMPUTE CURRENT PAY AMOUNTS) is a
structural record contained in the EMPLOYEE RECORD (input to process 5). Similarly, GROSS
PAY (output from process 5.3.4, a lower-level process not shown in the figure) is contained in the
structural record CURRENT PAY AMOUNTS (output from the parent process 5.3, COMPUTE
CURRENT PAY AMOUNTS).
Analyzing Input and Output
An important step in creating the data dictionary is to identify and categorize system input and
output data flow. Input and output analysis forms contain the following commonly included fields:
1. A descriptive name for the input or output. If the data flow is on a logical diagram, the name
should identify what the data are (for example, CUSTOMER INFORMATION). If the analyst
is working on the physical design or if the user has explicitly stated the nature of the input or
output, however, the name should include that information regarding the format. Examples are
CUSTOMER BILLING STATEMENT and CUSTOMER DETAILS INQUIRY.
2. The user contact responsible for further details clarification, design feedback, and final approval.
3. Whether the data is input or output.
4. The format of the data flow. In the logical design stage, the format may be undetermined.
5. Elements indicating the sequence of the data on a report or screen (perhaps in columns).
6. A list of elements, including their names, lengths, and whether they are base or derived,
and their editing criteria.
Once the form has been completed, each element should be analyzed to determine whether the
element repeats, whether it is optional, or whether it is mutually exclusive of another element. El-
Data StructureData Flow
Employee Employee Number +
Record Personal Information +
Wage Information +
Current Pay Information +
Year-to-Date Information
Timefile Employee Number +
Record Employee Name +
Hours Worked
Employee Employee Number +
Employee Name +
Address +
Current Pay Amounts +
Year-to-Date Figures
Paycheck
Wage Rate of Pay +
Information Number of Dependents
Current Gross Pay +
Pay Federal Withholding +
Amounts State Withholding +
Social Security Withholding +
Net Pay
Produce
Employee
Paycheck
5
Employee
Timefile
Record
Employee
Paycheck
Computer
Current
Pay
Amounts
5.3
Wage
Information
Hours
Worked
Current Pay
Amounts
=
=
=
=
=
Employee
TimefileD2
D1 Employee
Master
Employee
Record
FIGURE 8.11
Two data flow diagrams and
corresponding data dictionary
entries for producing an employee
paycheck.
240 PART III • THE ANALYSIS PROCESS
ements that fall into a group or that regularly combine with several other elements in many struc-
tures should be placed together in a structural record.
These considerations can be seen in the completed Input and Output Analysis Form for
World’s Trend Catalog Division (see Figure 8.12). In this example of a CUSTOMER BILLING
C O N S U L T I N G O P P O R T U N I T Y 8 . 1
Want to Make It Big in the Theatre? Improve Your Diction(ary)!
As you enter the door of Merman’s, Annie Oaklea greets you
warmly, saying, “I’m delighted with the work you have done on the
data flow diagrams. I would like you to keep playing the role of
systems analyst for Merman’s and see if you can eventually get a
new information system for our costume inventory sewn up. Un-
fortunately, some of the terms you’re using don’t come off very
well in the language of Shakespeare. Bit of a translation problem,
I suspect.”
Clinging to Annie’s initial praise, you are undaunted by her
exit line. You determine that a data dictionary based on the rental
and return data flow diagrams would make a big hit.
Begin by writing entries for a manual system in as much detail
as possible. Prepare two data process entries, two data flow entries,
two data store entries, one data structure entry, and four data ele-
ment entries using the formats in this chapter. Portraying interre-
lated data items with preciseness will result in rave reviews. (Refer
to Consulting Opportunity 7.1.)
Input/Output NameUser Contact
File Type
Output Input
File Format Report
Screen
Undetermined
Sequencing Element(s)
Input and Output Analysis FormCustomer Billing StatementSusan Han
Zip Code (Page Sequence)Order NumberElement Name
Length B/D Edit Criteria
Current Date
6 B (System Supplied)
Customer Number
6 D (Includes Check Digit)
Customer First Name
20 B Not Spaces
Customer Last Name
15 B Not Spaces
Customer Middle Initial
1 B A through Z or Space
Street
20 B Not Spaces
Apartment
20 B Not Spaces
City
20 B Not Spaces
State
2 B Valid State Abbr.
Zip
9 B Numeric, Last 4 Opt.
Order Number
6 D > 0
Order Date
8 B MM/DD/YYYY
Order Total
9 D Format: 9 (7) V99
Previous Payment Amount
5 D Format: 9 (7) V99
Total Amount Owed
9 D Format; 9 (7) V99
Comment
60 BComments Print one page for each customer. If there are more items
than will fit on a page, continue on a second page.
FIGURE 8.12
An example of an input/output
analysis form for World’s Trend
Catalog Division.
CHAPTER 8 • ANALYZING SYSTEMS USING DATA DICTIONARIES 241
STATEMENT, the CUSTOMER FIRST NAME, CUSTOMER LAST NAME, and CUSTOMER
MIDDLE INITIAL should be grouped together in a structural record.
Developing Data Stores
Another activity in creating the data dictionary is developing data stores. Up to now, we have deter-
mined what data needs to flow from one process to another. This information is described in data
structures. The information, however, may be stored in numerous places, and in each place the data
store may be different. Whereas data flows represent data in motion, data stores represent data at rest.
For example, when an order arrives at World’s Trend (see Figure 8.13), it contains mostly
temporary information, that is, the information needed to fill that particular order, but some in-
formation might be stored permanently. Examples of the latter include information about cus-
tomers (so catalogs can be sent to them) and information about items (because these items will
appear on many other customers’ orders).
Data stores contain information of a permanent or semipermanent (temporary) nature. An
ITEM NUMBER, DESCRIPTION, and ITEM COST are examples of information that is rela-
tively permanent. So is the TAX RATE. When the ITEM COST is multiplied by the TAX RATE,
however, the TAX CHARGED is calculated (or derived). Derived values do not have to be stored
in a data store.
When data stores are created for only one report or screen, we refer to them as “user views,”
because they represent the way that the user wants to see the information.
Customer Master = Customer Number +Customer Name +Address +
Telephone +
Corporate Credit Card Number +Expiration Date
Item Master =
Item Number +Price +
Quantity on HandOrder Record = Customer Number +Catalog Number +Order Date +
{Available Order Items} +Merchandise Total +(Tax) +
Shipping and Handling +Order Total +
Method of Payment +(Credit Card Type) +(Credit Card Number) +(Expiration Date)Available Order Items = Item Number +Quantity Ordered +Quantity Shipped +Current Price
Method of Payment = [Check Charge Money Order]Credit Card Type = [World’s Trend American Express MasterCard Visa]
FIGURE 8.13
Data stores derived from a
pending order at World’s Trend
Catalog Division.
242 PART III • THE ANALYSIS PROCESS
USING THE DATA DICTIONARY
The ideal data dictionary is automated, interactive, online, and evolutionary. As the systems ana-
lyst learns about the organization’s systems, data items are added to the data dictionary. On the
other hand, the data dictionary is not an end in itself and must never become so. To avoid becom-
ing sidetracked with the building of a complete data dictionary, the systems analyst should view
it as an activity that parallels systems analysis and design.
To have maximum power, the data dictionary should be tied into a number of systems pro-
grams so that when an item is updated or deleted from the data dictionary, it is automatically up-
dated or deleted from the database. The data dictionary becomes simply a historical curiosity if it
is not kept current.
The data dictionary may be used to create screens, reports, and forms. For example, exam-
ine the data structure for the World’s Trend ORDER PICKING SLIP in Figure 8.14. Because the
necessary elements and their lengths have been defined, the process of creating physical docu-
ments consists of arranging the elements in a pleasing and functional way using design guidelines
and common sense. Repeating groups become columns, and structural records are grouped to-
gether on the screen, report, or form. The report layout for the World’s Trend ORDER PICKING
SLIP is shown in Figure 8.15. Notice that FIRST NAME and LAST NAME are grouped together
Order Picking Slip = Order Number +
Order Date +
Customer Number +
Customer Name +
Customer Address +
Customer Telephone +
{Order Item Selection} +
Number of Items
Order Item Selection = Item Number +
Item Description +
Size Description +
Color Description +
Warehouse Section +
Shelf Number +
Quantity Ordered +
Quantity Picked
Customer Name = First Name +
(Middle Initial) +
Last Name
Address = Street +
(Apartment) +
City +
State +
Zip +
(Zip Expansion) +
(Country)
Telephone = Area Code +
Local Number
FIGURE 8.14
Data structure for an order picking
slip at World’s Trend Catalog
Division.
CHAPTER 8 • ANALYZING SYSTEMS USING DATA DICTIONARIES 243
in NAME, and that QUANTITY (PICKED and ORDERED), SECTION, SHELF NUMBER,
ITEM NUMBER, ITEM DESCRIPTION, SIZE, and COLOR form a series of columns, because
they are the repeating elements.
The data structure and elements for a data store are commonly used to generate correspon-
ding computer language source code, which is then incorporated into computer programs. The
data dictionary may be used in conjunction with a data flow diagram to analyze the system de-
sign, detecting flaws and areas that need clarification. Some considerations are:
1. All base elements on an output data flow must be present on an input data flow to the process
producing the output. Base elements are keyed and should never be created by a process.
2. A derived element must be created by a process and should be output from at least one
process into which it is not input.
3. The elements that are present in a data flow coming into or going out of a data store must
be contained in the data store.
If begun early, a data dictionary can save many hours of time in the analysis and design phases.
The data dictionary is the one common source in the organization for answering questions and
settling disputes about any aspect of data definition. An up-to-date data dictionary can serve as
an excellent reference for maintenance efforts on unfamiliar systems. Automated data dictionar-
ies can serve as references for both people and programs.
Using Data Dictionaries to Create XML
Extensible markup language (XML) is a language that can be used to exchange data between
businesses or between systems within a business. It is similar to HTML, the markup language
used to create Web pages, but is more powerful. HTML is concerned primarily with formatting a
document; XML addresses the problem of sharing data when users have different computer sys-
tems and software or different database management systems (for example, one company using
Order Number: 999999
Order Date Z9/99/9999
Customer Number: 999999
Name: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXStreet: XXXXXXXXXXXXXXXXXXXXXXXXXXXXApartment: XXXXXXXXCity, State, Zip XXXXXXXXXXXXXXXXXXXXXXXXXXXX, XX 99999-ZZZZ
Country: XXXXXXXXXXXXXXXXXXXXXXXXXXXXTelephone: (999) 999-9999
Order Picking Slip
—- Quantity —- Shelf
Number
Item
Number
Picked Ordered Section
Item Description
Size Color
ZZZZ9 XXXXX 99999 999999 XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXX
ZZZZ9 XXXXX 99999 999999 XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXX
ZZZZ9 XXXXX 99999 999999 XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXX
ZZZZ9 XXXXX 99999 999999 XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXX
ZZZZ9 XXXXX 99999 999999 XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXX
ZZZZ9 XXXXX 99999 999999 XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXX
ZZZZ9 XXXXX 99999 999999 XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXX
ZZZZ9 XXXXX 99999 999999 XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXNumber of Items: Z9
World’s Trend
FIGURE 8.15
Order picking slip created from
the data dictionary.
244 PART III • THE ANALYSIS PROCESS
Oracle and another using IBM’s DB2). If everyone used the same software or database manage-
ment system, there would be little need for XML.
Once an XML document has been created, the data may be transformed into a number of dif-
ferent output formats and displayed in many different ways, including printed output, Web pages,
output for a handheld device, and portable document format (PDF) files. Thus, the document’s
data content is separated from the output format. The XML content is defined once as data and
then transformed as many times as necessary.
The advantage of using an XML document is that the analyst may select only the data that
an internal department or external partner needs to have in order to function. This helps to en-
sure the confidentiality of data. For example, a shipping company may receive only the cus-
tomer name, the address, the item number, and the quantity to ship, but not credit card
information or other financial data. This efficient approach also cuts down on information
overload.
XML therefore is a way to define, sort, filter, and translate data into a universal data language
that can be used by anyone. XML may be created from databases, a form, or software programs,
or it may be keyed directly into a document, text editor, or XML entry program.
The data dictionary is an ideal starting point for developing XML content. The key to using
XML is creating a standard definition of the data. This is accomplished by using a set of tags or
data names that are included before and after each data element or structure. The tags become the
metadata, or data about the data. Data may be further subdivided into smaller elements and struc-
tures until all elements are defined. XML elements may also include attributes, an additional piece
of data included within the tag that describes something about the XML element.
Figure 8.16 illustrates a data dictionary containing customer, order, and payment informa-
tion. The overall collection of customers is included in what is called the root element, customers.
An XML document may contain only one root element, so it is often the plural of the data con-
tained in the XML document. Each customer may place many orders. The structure is defined in
the two left columns, and the XML code appears on the right. CUSTOMER, as you can see, con-
sists of a NAME, ADDRESS, CURRENT BALANCE, multiple ORDER INFORMATION en-
tries, and a PAYMENT. Some of these structures are further subdivided.
The XML document tends to mirror the data dictionary structure. The first entry (other than
an XML line identifying the document) is �customer�, which defines the entire collection of
customer information. The less than (�) and greater than (�) symbols are used to identify tag
names (similar to HTML). The last line of the XML document is a closing tag, �/customer�, sig-
nifying the end of the customer information.
Customer is defined first and contains an attribute, the customer number. There is often a dis-
cussion about whether data should be stored as an element or an attribute. In this case, they are
stored as an attribute.
The name tag, �name�, is defined next because it is the first entry in the data dictionary.
NAME is a structure consisting of LAST NAME, FIRST NAME, and an optional MIDDLE INI-
TIAL. In the XML document, this structure starts with �name� and is followed by �lastname�,
�firstname�, and �middle_initial�. Because spaces are not allowed in XML tag names, an un-
derscore is typically used to separate words. The closing �/name� tag signifies the end of the
group of elements. Using a structure such as name saves time and coding if the transformation
displays the full name. Each of the child elements will be on one line separated by a space. Name
also contains an attribute, either I for individual or C for corporation.
Indentation is used to show which structures contain elements. Note that �address� is sim-
ilar to �customer�, but when we get to �order_information� there is a big difference.
There are multiple entries for �order_information�, each containing an �order_number�,
�order_date�, �shipping_date�, and �total�. Because the payment is made either by check or
credit card, only one of these may be present. In our example, payment is by check. The dates have
an attribute called format that indicates whether the date appears as month, day, year; year, month,
day; or day, month, year. If a credit card is used to make a payment, a TYPE attribute contains ei-
ther an M, V, A, D, or an O indicating the type of credit card (MasterCard, Visa, and so on).
XML Document Type Definitions
Often the element structure of XML content is defined using a document type definition (DTD). A
DTD is used to determine whether the XML document content is valid, that is, whether it conforms
CHAPTER 8 • ANALYZING SYSTEMS USING DATA DICTIONARIES 245
to the order and type of data that must be present in the document. The DTD is easy to create and
well supported by standard software. Once the DTD has been completed, it may be used to vali-
date the XML document using standard XML tools. The DTD is easier to create if a data diction-
ary has been completed, since the analyst has worked with users and made decisions on the
structure of the data.
Figure 8.17 illustrates the document type definition for the Customer XML document. Key-
words, such as !DOCTYPE, indicating the start of the DTD, must be in capital letters. !ELE-
MENT describes an element, and !ATTLIST describes an attribute, listing the element name
followed by the attribute name. An element that has the keyword #PCDATA, for parsed charac-
ter data, is a primitive element, not further defined. An element that has a series of other elements
within parentheses means that they are child elements and must be in the order listed. The state-
ment �!ELEMENT name (lastname, firstname, middle_initial?)� means that the name must
have the last name followed by the first name followed by the middle initial. The question mark
after “middle_initial” means that the element is optional and may be left out of the document for
Data Dictionary
XML
Customer = Name +
Address +
Current Balance +
{Order Information} +Payment
Last Name +
First Name +
(Middle Initial)
Name =
Street +
(Apartment) +
City +
State +
Zip +
Country
Address =
Order Number +
Order Date +
Ship Date +
Total
Order Information =
Payment =
Check Number
Check =
Credit Card Number +Expiration Date
Credit Card =
[Check Credit Card] +Payment Date +
Payment Amt
FIGURE 8.16
Using a data dictionary entry to
develop XML content. The XML
document mirrors the data
dictionary structure.
246 PART III • THE ANALYSIS PROCESS
a particular customer. A plus sign means that there are one or more repeatable elements. Cus-
tomers must contain at least one customer tag but could contain many customer tags. An asterisk
means that there is zero or more of the elements. Each customer may have zero to many orders.
A vertical bar separates two or more child elements that are mutually exclusive. Payment con-
tains either check or credit card as options.
The attribute list definition for a customer number contains a keyword ID (in uppercase letters).
This means that the attribute number must appear only once in the XML document as an attribute
for an element with an ID. That it is somewhat similar to a primary key. The difference is that, if the
document had several different elements, each with an ID attribute, the given ID (C15008 in this ex-
ample) could appear only once. An ID must start with a letter or an underscore and cannot be solely
a number. The reason behind putting the customer number as an ID is to ensure that it is not repeated
in a longer document. The keyword #REQUIRED means that the attribute must be present. A key-
word of #IMPLIED means that the attribute is optional. A document may also have an IDREF at-
tribute, which links one element with another that is an ID. The ORDER tag has a customer_number
attribute defined as an IDREF, and the value C15008 must be present in an ID somewhere in the
document. An attribute list containing values in parentheses means that the attribute must con-
tain one of the values. A DTD definition �!ATTLIST credit_card type (M|V|A|D|O)
#REQUIRED� means that the credit card type must be either an M, V, A, D, or O.
XML Schemas
A schema is another, more precise way to define the content of an XML document. Schemas may
include the exact number of times an element may occur as well as the type of data within elements,
< !DOCTYPE customers [< !ELEMENT customers< !ELEMENT customer< !ATTLIST customer number< !ELEMENT name< !ATTLIST name type< !ELEMENT lastname< !ELEMENT firstname< !ELEMENT middle_initial< !ELEMENT address< !ELEMENT street< !ELEMENT apartment< !ELEMENT city < !ELEMENT state< !ELEMENT zip < !ELEMENT country< !ELEMENT current_balance< !ELEMENT order< !ATTLIST order customer_number< !ELEMENT order_number< !ELEMENT order_date< !ATTLIST order_date format< !ELEMENT payment< !ELEMENT check< !ELEMENT credit_card< !ATTLIST credit_card type< !ELEMENT credit_card_number< !ELEMENT expiration_date< !ELEMENT payment_date< !ATTLIST payment_date format< !ELEMENT payment_amt ] >
(customer) + >
(name, address, current_balance, order*) >ID #REQUIRED>
(lastname, firstname, middle_initial?) >(I⎮C) #REQUIRED>(#PCDATA) >
(#PCDATA) >
(#PCDATA) >
(street, apartment?, city, state, zip, country) >(#PCDATA) >
(#PCDATA) >
(#PCDATA) >
(#PCDATA) >
(#PCDATA) >
(#PCDATA) >
(#PCDATA) >
(order_number, order_date, ship_date, total) >IDREF #REQUIRED>(#PCDATA) >
(#PCDATA) >
(mmddyyyy⎮yyyymmdd⎮ddmmyyyy) #REQUIRED>(check⎮credit_card) >(check_number) >
(credit_card_number, expiration_date) >(M⎮V⎮A⎮D⎮O) #REQUIRED>(#PCDATA) >
(#PCDATA) >
(#PCDATA) >
(mmddyyyy⎮yyyymmdd⎮ddmmyyyy) #REQUIRED>(#PCDATA) >
FIGURE 8.17
A document type definition for the
customer XML document.
CHAPTER 8 • ANALYZING SYSTEMS USING DATA DICTIONARIES 247
HYPERCASE® EXPERIENCE 8
“You’re really doing very well. Snowden says you’ve given him
all sorts of new ideas for running the new department. That’s saying
quite a lot, when you consider that he has a lot of his own ideas. By
now I hope you’ve had a chance to speak with everyone you would
like to: certainly Snowden himself, Tom Ketcham, Daniel Hill, and
Mr. Hyatt.
“Mr. Hyatt is an elusive soul, isn’t he? I guess I didn’t meet him
until well into my third year. I hope you get to find out about him much
sooner. Oh, but when you do get to see him, he cuts quite a figure,
doesn’t he? And those crazy airplanes. I’ve almost been conked on the
head by one in the parking lot. But how can you get angry, when it’s
The Boss who’s flying it? He’s also got a secret—or should I say pri-
vate—oriental garden off his office suite. No, you’ll never see it on the
building plans. You have to get to know him very well before he’ll
show you that, but I would wager it’s the only one like it in Tennessee
and maybe in the whole United States. He fell in love with the won-
derful gardens he saw in Southeast Asia as a young man. It goes deeper
than that, however. Mr. Hyatt knows the value of contemplation and
meditation. If he has an opinion, you can be sure it has been well
thought through.”
HYPERCASE Questions
1. Briefly list the data elements that you have found on three
different reports produced at MRE.
2. Based on your interviews with Snowden Evans and others,
list the data elements that you believe you should add to the
Management Unit’s project reporting systems to better
capture important data on project status, project deadlines,
and budget estimates.
3. Create a data dictionary entry for a new data store, a new
data flow, and a new data process that you are suggesting
based on your response to Question 2.
4. Suggest a list of new data elements that might be helpful to
Jimmy Hyatt but are clearly not being made available to him
currently.
FIGURE 8.HC1
In HyperCase, you can look at the
data dictionary kept at MRE.
such as character or numeric values, including the length of the element, limits on the data, and the
number of places to the left and right of a decimal number.
A data dictionary is an excellent starting point for developing an XML document and a doc-
ument type of definition or schema. The advantage of using XML to define data is that, in the
XML format, data are stored in a pure text format and not dependent on any proprietary software.
The document may be easily validated and transformed into many different output formats.
Industry groups or organizations may be involved in defining an industry-specific XML
structure so that all involved parties understand what the data mean. This is very important when
248 PART III • THE ANALYSIS PROCESS
KEYWORDS AND PHRASES
base element
binary format
data dictionary
data element
data structure
derived element
document type definition (DTD)
extensible markup language (XML)
ID
IDREF
packed decimal
physical data structure
repeating group
repeating item
repository
schema
structural record
system deliverables
varchar
zoned decimal
REVIEW QUESTIONS
1. Define the term data dictionary. Define metadata.
2. What are four reasons for compiling a complete data dictionary?
3. What information is contained in the data repository?
4. What is a structural record?
5. List the eight specific categories that each entry in the data dictionary should contain. Briefly give
the definition of each category.
6. What are the basic differences among data dictionary entries prepared for data stores, data structures,
and data elements?
7. Why are structural records used?
8. What is the difference between logical and physical data structures?
9. Describe the difference between base and derived elements.
10. How do the data dictionary entries relate to levels in a set of data flow diagrams?
11. List the four steps to take in compiling a data dictionary.
12. Why shouldn’t compiling the data dictionary be viewed as an end in itself?
13. What are the main benefits of using a data dictionary?
14. What does extensible markup language (XML) describe?
15. What is a document type definition?
16. How does a document type definition help to ensure that an XML document contains all necessary
elements?
17. When should attributes be used in an XML document?
18. What does an ID attribute ensure?
19. What does an IDREF attribute validate?
an element name may have several meanings. An example is “state,” which may mean a postal
state abbreviation or the state of an order or account. Examples of industry-specific XML docu-
ment type definitions and schemas may be found at www.xml.org.
SUMMARY
Using a top-down approach, the systems analyst uses data flow diagrams to begin compiling a data diction-
ary, which is a reference work containing data about data, or metadata, on all data processes, stores, flows,
structures, and logical and physical elements in the system being studied. One way to begin is by including
all data items from data flow diagrams.
A larger collection of project information is called a repository. CASE tools permit the analyst to cre-
ate a repository that may include information about data flows, stores, record structures, and elements;
about procedural logic screen and report design; and about data relationships. A repository can also con-
tain information about project requirements and final system deliverables; and about project management
information.
Each entry in the data dictionary contains the item name, an English description, aliases, related data
elements, the range, the length, encoding, and necessary editing information. The data dictionary is useful
in all phases of analysis, design, and ultimately documentation, because it is the authoritative source on how
a data element is used and defined by users in the system. Many large systems feature computerized data
dictionaries that cross-reference all programs in the database using a particular data element. The data dic-
tionary can also be used to create XML that enables businesses with different systems, software, or database
management systems to exchange data.
www.xml.org
CHAPTER 8 • ANALYZING SYSTEMS USING DATA DICTIONARIES 249
PROBLEMS
1. Based on Figure 7.EX1 in Chapter 7, Joe, one of your systems analysis team members, made the
following entry for the data dictionary used by Marilyn’s Tours:
DATA ELEMENT � TOURIST* * * * PAYMENT
ALIAS � TOURIST PAY
CHARACTERS � 12–24
RANGE � $5.00–$1,000
VARIABLES � $5.00, $10.00, $15.00 up to $1,000, and anything in between in dollars and cents.
TO CALCULATE � TOTAL COST OF ALL TOURS, ANY APPLICABLE N.Y. STATE TAX,
minus any RESERVATION DEPOSITS made.
a. Is this truly a data element? Why or why not?
b. Rewrite the data dictionary entry for TOURIST PAYMENT, reclassifying it if necessary. Use the
proper form for the classification you choose.
2. Sue Kong, the systems analyst, has made significant progress in understanding the data movement at
Shanghai Megabank. To share what she has done with other members of her team as well as the head
of regional operations, she is composing a data dictionary.
a. Write an entry in Sue’s data dictionary for three of the data flows in regional banking. Be as
complete as possible.
b. Write an entry in Sue’s data dictionary for three of the data stores in regional banking. Be as
complete as possible.
3. Jorge Alvarez, the manager of the bookstore that your systems analysis team has been working with
to build a computerized inventory system, thinks that one of your team members is making a
nuisance of himself by asking him extremely detailed questions about data items used in the system.
For example, he asks, “Jorge, how much space, in characters, does the listing of an ISBN take?”
a. What are the problems created by going directly to the manager with questions concerning data
dictionary entries? Use a paragraph to list the problems you can see with your team member’s
approach.
b. In a paragraph, explain to your team member how he can better gather information for the data
dictionary.
4. Michael Bush owns a store specializing in travel gear and clothes. Manufacturers have their own
coding, but there are many manufacturers. Set up data elements for six different travel hats from
three different suppliers.
5. Michael (from Problem 4) also assembles packages of camping kits. Each kit is a group of separate
products that are sold as a package. Each package (called a PRODUCT) is built using many parts,
which vary from product to product. Interviews with the head parts clerk have resulted in a list of
elements for the PRODUCT PART Web page, showing which parts are used in the manufacture of
each product. A prototype of the PRODUCT-PART Web page is illustrated in Figure 8.EX1. Create a
data structure dictionary entry for the PRODUCT-PART.
FIGURE 8.EX1
A prototype of the PRODUCT-
PART Web page.
9. List the master files that would be necessary to implement the CRUISE AVAILABILITY INQUIRY.
10. The following ports of call are available for the Pacific Holiday Company:
250 PART III • THE ANALYSIS PROCESS
6. Analyze the elements found on the PRODUCT-PART Web page and create the data structure for the
PRODUCT MASTER and the PART MASTER data stores.
7. Which of the elements on the PRODUCT-PART Web page are derived elements?
8. The Pacific Holiday Company arranges cruise vacations of varying lengths at several locations.
When customers call to check on the availability of a cruise, a CRUISE AVAILABILITY INQUIRY,
illustrated in Figure 8.EX2, is used to supply them with information. Create the data dictionary
structure for the CRUISE AVAILABILITY INQUIRY.
MM/DD/YYYY CRUISE AVAILABILITY HH:MM
ENTER STARTING DATE Z9-ZZZ-9999
CRUISE INFORMATION:
CRUISE SHIP XXXXXXXXXXXXXXXXXXX
LOCATION XXXXXXXXXXXXXXXXXXX
STARTING DATE Z9-ZZZ-9999 ENDING DATE Z9-ZZZ-9999
NUMBER OF DAYS ZZ9
COST ZZ,ZZZ.99
DISCOUNTS ACCEPTED XXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXX
OPENINGS REMAINING ZZZZ9
FIGURE 8.EX2
A display screen showing
cruise availability.
Apia Nuku Hiva Auckland
Pago Pago Papeete Wellington
Bora Bora Raiatea Christ Church
Moorea Napier Dunedin
Create the PORT OF CALL element. Examine the data to determine the length and format of
the element.
11. Raúl Esparza, the ecommerce manager for Moonlight Mugs, a company that sells customized coffee
mugs, would like to send information to another company that maintains the warehouse and provides
shipping services. Order information is obtained from a secure Web site, including customer number,
name and address, telephone number, email address, product number and quantity, as well as credit
card information. There may be several different products shipped on one order. The shipping
company handles items for other small businesses as well. Define an XML document that will
include only the information that the shipping company needs to ship goods to the customer.
12. Once the order in Problem 11 has been shipped, the shipping company sends information back to
Moonlight Mugs, including the customer name and address, shipper tracking number, data shipped,
quantity ordered, quantity shipped, and quantity backordered. Define an XML document that will
include the information sent to Moonlight Mugs.
13. Create a document type definition for Problem 11.
14. Western Animal Rescue is a nonprofit organization that supports the fostering and adoption of
animals, such as cats, dogs, and birds. People can register to adopt animals. Others register and add
animals for adoption. Create the data dictionary structure representing a person registering to adopt
an animal. Include name, address (street, city, state or province, zip or mailing code), telephone
number, email address, date of birth, current pets (type, breed, age of pet), and references. Each
person may have multiple pets and must have at least three references. References must include
CHAPTER 8 • ANALYZING SYSTEMS USING DATA DICTIONARIES 251
name, address, telephone number, email address, and how they know the person registering to adopt
an animal. Be sure to include notation for repeating elements and optional elements.
15. Define the length, the type of data,